-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloaders.py
201 lines (172 loc) · 6.15 KB
/
loaders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import numpy as np
from musket_core.datasets import PredictionItem
from PIL import Image
import pandas as pd
import os
import cv2
DIR = os.getenv('MAIN_DIR', 'D:/cells')
GLUED_IMAGES = os.getenv('GLUED_IMAGES', False)
TRAIN_SUBDIR = os.getenv('TRAIN_SUBDIR', 'train')
EXTRA_TRAIN_SUBDIR = os.getenv('EXTRA_TRAIN_SUBDIR', 'train2')
TRAIN_CSV = os.getenv('TRAIN_CSV', 'train.csv')
EXTRA_TRAIN_CSV = os.getenv('EXTRA_TRAIN_CSV', 'train2.csv')
TEST_SUBDIR = os.getenv('TEST_SUBDIR', 'test')
GLUED_REVERSE_CHANNELS = os.getenv('GLUED_REVERSE_CHANNELS', False)
print("TRAIN_SUBDIR", TRAIN_SUBDIR)
print("GLUED_IMAGES", GLUED_IMAGES)
print("GLUED_REVERSE_CHANNELS", GLUED_REVERSE_CHANNELS)
print("EXTRA_TRAIN_SUBDIR", EXTRA_TRAIN_SUBDIR)
import musket_core.datasets as ds
class ProteinDataGenerator:
def __init__(self, paths, labels):
self.paths, self.labels = paths, labels
def __len__(self):
return len(self.paths)
def __getitem__(self, idx):
X,y = self.__load_image(self.paths[idx]),self.labels[idx]
return PredictionItem(self.paths[idx],X, y)
def __load_image(self, path):
if GLUED_IMAGES:
if GLUED_REVERSE_CHANNELS:
im = np.array(Image.open(path + '.png'))
else:
im = cv2.imread(path + '.png', -1)
else:
R = Image.open(path + '_red.png')
G = Image.open(path + '_green.png')
B = Image.open(path + '_blue.png')
Y = Image.open(path + '_yellow.png')
try:
im = np.stack((
np.array(R),
np.array(G),
np.array(B),
np.array(Y)
), -1)
except:
return np.zeros((512,512,4))
return im
class ProteinDataGeneratorClazz:
def __init__(self, paths, labels,clazz):
self.paths, self.labels = paths, labels
self.clazz=clazz
def __len__(self):
return len(self.paths)
def __getitem__(self, idx):
X,y = self.__load_image(self.paths[idx]),self.labels[idx]
y1=np.array([y[self.clazz]])
return PredictionItem(self.paths[idx],X, y1)
def isPositive(self, item):
v=self.labels[item]
return v[self.clazz]==1
def __load_image(self, path):
R = Image.open(path + '_red.png')
G = Image.open(path + '_green.png')
B = Image.open(path + '_blue.png')
Y = Image.open(path + '_yellow.png')
im = np.stack((
np.array(R),
np.array(G),
np.array(B),
np.array(Y)
), -1)
return im
def getTrainDataset():
path_to_train = DIR + f'/{TRAIN_SUBDIR}/'
data = pd.read_csv(DIR + f'/{TRAIN_CSV}')
paths = []
labels = []
for name, lbl in zip(data['Id'], data['Target'].str.split(' ')):
y = np.zeros(28)
for key in lbl:
y[int(key)] = 1
paths.append(os.path.join(path_to_train, name))
labels.append(y)
return np.array(paths), np.array(labels)
def calculate_fold_indexes(paths):
foldSets = []
foldIndexes = []
for i in range(1, 6):
train = pd.read_csv("./folds/fold" + str(i) + "_train.csv")
test = pd.read_csv("./folds/fold" + str(i) + "_val.csv")
foldSets.append((set(train["Id"].values), set(test["Id"].values)))
foldIndexes.append([[], []])
for i in range(len(paths)):
bn = os.path.basename(paths[i])
for j in range(len(foldSets)):
if bn in foldSets[j][0]:
foldIndexes[j][0].append(i)
if bn in foldSets[j][1]:
foldIndexes[j][1].append(i)
return foldIndexes
def calculate_holdout_indexes(paths):
train = pd.read_csv("./folds/holdout.csv" )
fold=set(train["Id"].values)
foldIndexes=[]
for i in range(len(paths)):
bn = os.path.basename(paths[i])
if bn in fold:
foldIndexes.append(i);
return foldIndexes
def getTrainDatasetForClass(clazz):
path_to_train = DIR + f'/{TRAIN_SUBDIR}/'
data = pd.read_csv(DIR + f'/{TRAIN_CSV}')
paths = []
labels = []
for name, lbl in zip(data['Id'], data['Target'].str.split(' ')):
y = np.zeros(1)
for key in lbl:
if key==clazz:
y[int(key)] = 1
paths.append(os.path.join(path_to_train, name))
labels.append(y)
return np.array(paths), np.array(labels)
def getTrainDataset2():
path_to_train = DIR + f'/{EXTRA_TRAIN_SUBDIR}/'
data = pd.read_csv(DIR + f'/{EXTRA_TRAIN_CSV}')
paths = []
labels = []
for name, lbl in zip(data['Id'], data['Target'].str.split(' ')):
y = np.zeros(28)
for key in lbl:
i=int(key)
if i<28:
y[i] = 1
paths.append(os.path.join(path_to_train, name))
labels.append(y)
return np.array(paths), np.array(labels)
def get_test_paths_and_ids():
path_to_test = DIR + f'/{TEST_SUBDIR}/'
data = pd.read_csv(DIR + '/sample_submission.csv')
paths = []
labels = []
for name in data['Id']:
y = np.ones(28)
paths.append(os.path.join(path_to_test, name))
labels.append(y)
return np.array(paths), np.array(labels)
def createDataSet():
paths, labels = getTrainDataset()
paths2, labels2 = getTrainDataset2()
paths = np.concatenate([paths2, paths])
labels = np.concatenate([labels2, labels])
foldIndexes = calculate_fold_indexes(paths)
tg = ProteinDataGenerator(paths, labels)
tg.folds = foldIndexes;
return tg
def createHoldoutDataSet():
paths, labels = getTrainDataset()
paths2, labels2 = getTrainDataset2()
paths = np.concatenate([paths2, paths])
labels = np.concatenate([labels2, labels])
foldIndexes = calculate_fold_indexes(paths)
tg = ProteinDataGenerator(paths, labels)
tg.folds = foldIndexes;
hi = calculate_holdout_indexes(paths)
test = ds.SubDataSet(tg, hi)
return test,labels[hi]
def getSubmitSample():
return pd.read_csv(DIR + '/sample_submission.csv')
def getTestDataSet():
pathsTest, labelsTest = get_test_paths_and_ids()
return ProteinDataGenerator(pathsTest, labelsTest)