-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
77 lines (70 loc) · 2.82 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import argparse
from classification_pipeline import classification
import loaders
from sklearn.metrics.classification import f1_score
import musket_core.datasets as ds
import tresholds
import os
import utils
def main():
parser = argparse.ArgumentParser(description='Training for proteins')
parser.add_argument('--inputFile', type=str, default="./proteins.yaml",
help='learner config')
parser.add_argument('--fold', type=int, default=0,
help='fold number')
parser.add_argument('--stage', type=int, default=0,
help='stage')
parser.add_argument('--dir', type=str, default="",
help='directory with data')
parser.add_argument('--gpus', type=int, default=1,
help='stage')
parser.add_argument('--workers', type=int, default=0,
help='stage')
parser.add_argument('--ql', type=int, default=20,
help='stage')
args = parser.parse_args()
if args.workers>0:
ds.USE_MULTIPROCESSING=True
ds.NB_WORKERS=args.workers
ds.AUGMENTER_QUEUE_LIMIT = args.ql
if args.dir!="":
loaders.DIR=args.dir
if args.fold==100:
for i in range(5):
args.fold=i
doEval(args)
else:
doEval(args)
def doEval(args):
test, correct_labels = loaders.createHoldoutDataSet()
t = get_or_calculate_tresholds(args)
predictions = get_or_calculate_holdout(args, test)
for i in range(28):
print(i, f1_score(correct_labels[:, i], predictions[:, i] > t[0][i]))
print("Macro F1:" + str(f1_score(correct_labels, predictions > t[0], average="macro")))
print("Val Macro F1:", t[1])
def get_or_calculate_holdout(args, test):
ps = args.inputFile + ".hold_out_pred." + str(args.fold) + "." + str(args.stage)
if not os.path.exists(ps):
cfg = classification.parse(args.inputFile)
cfg.gpus = args.gpus
cfg.setAllowResume(True)
predictions = cfg.predict_all_to_array(test, fold=args.fold, stage=args.stage, ttflips=True)
utils.save(ps, predictions)
predictions = utils.load(ps);
return predictions
def get_or_calculate_tresholds(args):
ps = args.inputFile + ".tresholds." + str(args.fold) + "." + str(args.stage)
if not os.path.exists(ps):
cfg = classification.parse(args.inputFile)
cfg.gpus = args.gpus
cfg.setAllowResume(True)
train = loaders.createDataSet();
pred, labels = cfg.evaluate_all_to_arrays(train, fold=args.fold, stage=args.stage, ttflips=True)
v = tresholds.getOptimalT(pred, labels)
utils.save(ps, v)
utils.save(args.inputFile + ".validation_pred." + str(args.fold) + "." + str(args.stage), [pred,labels])
t = utils.load(ps)
return t
if __name__ == '__main__':
main()