|
| 1 | +def step(poses, vels) |
| 2 | + poses.each_with_index { |pi, i| |
| 3 | + # pi = 2, p = 5, we want it to increase. |
| 4 | + # so we do 5 <=> 2 which is 1. |
| 5 | + vels[i] += poses.sum { |p| p <=> pi } |
| 6 | + } |
| 7 | + vels.each_with_index { |vel, i| poses[i] += vel } |
| 8 | +end |
| 9 | + |
| 10 | +def run1k(moons) |
| 11 | + pos = moons.dup |
| 12 | + vel = moons.map { 0 } |
| 13 | + |
| 14 | + 1000.times { step(pos, vel) } |
| 15 | + pos.zip(vel) |
| 16 | +end |
| 17 | + |
| 18 | +def codegen_vel_update |
| 19 | + i = (0...4).to_a |
| 20 | + i.combination(2) { |a, b| |
| 21 | + # among these options, this one seems to be fastest. |
| 22 | + puts "if p#{a} > p#{b}; v#{a} -= 1; v#{b} += 1; elsif p#{b} > p#{a}; v#{a} += 1; v#{b} -= 1; end" |
| 23 | + |
| 24 | + #puts "if p#{a} > p#{b}; v#{a}] -= 1; v#{b} += 1; end" |
| 25 | + #puts "if p#{b} > p#{a}; v#{a}] += 1; v#{b} -= 1; end" |
| 26 | + |
| 27 | + #puts "cmp#{a}#{b} = p#{a} <=> p#{b}" |
| 28 | + #puts "v#{a} -= cmp#{a}#{b}" |
| 29 | + #puts "v#{b} += cmp#{a}#{b}" |
| 30 | + } |
| 31 | +end |
| 32 | + |
| 33 | +def period(moons) |
| 34 | + raise "Can't handle anything other than four moons" if moons.size != 4 |
| 35 | + |
| 36 | + p0, p1, p2, p3 = moons |
| 37 | + v0 = v1 = v2 = v3 = 0 |
| 38 | + |
| 39 | + t = 0 |
| 40 | + |
| 41 | + # A lot of code duplication, but this otherwise runs slow (> 1 second). |
| 42 | + # I probably just should use a compiled language. |
| 43 | + # It's not like I wrote this by hand though, codegen saves the day. |
| 44 | + while true |
| 45 | + if p0 > p1; v0 -= 1; v1 += 1; elsif p1 > p0; v0 += 1; v1 -= 1; end |
| 46 | + if p0 > p2; v0 -= 1; v2 += 1; elsif p2 > p0; v0 += 1; v2 -= 1; end |
| 47 | + if p0 > p3; v0 -= 1; v3 += 1; elsif p3 > p0; v0 += 1; v3 -= 1; end |
| 48 | + if p1 > p2; v1 -= 1; v2 += 1; elsif p2 > p1; v1 += 1; v2 -= 1; end |
| 49 | + if p1 > p3; v1 -= 1; v3 += 1; elsif p3 > p1; v1 += 1; v3 -= 1; end |
| 50 | + if p2 > p3; v2 -= 1; v3 += 1; elsif p3 > p2; v2 += 1; v3 -= 1; end |
| 51 | + |
| 52 | + p0 += v0 |
| 53 | + p1 += v1 |
| 54 | + p2 += v2 |
| 55 | + p3 += v3 |
| 56 | + |
| 57 | + t += 1 |
| 58 | + |
| 59 | + # Given each state, there is only one previous state that could have led to it. |
| 60 | + # Because of this, the initial state is guaranteed to be the first repeat state. |
| 61 | + |
| 62 | + # Further, consider any state with velocities all 0: |
| 63 | + # t-1: [(p0 , ?), (p1 , ?), (p2, 0), (p3 , ?)] |
| 64 | + # t : [(p0 , 0), (p1 , 0), (p2, 0), (p3 , 0)] |
| 65 | + # t+1: [(p0+v0, v0), (p1+v1, v1), (p2+v2, v2), (p3+v3, v3)] |
| 66 | + # |
| 67 | + # We see that positions at t-1 must be equal to positions at t, because velocities ended at 0. |
| 68 | + # Since positions are the same, velocity deltas are the same, which means we know more: |
| 69 | + # |
| 70 | + # t-2: [(p0+v0, ?), (p1+v1, ?), (p2+v2, ?), (p3+v3, ?)] |
| 71 | + # t-1: [(p0 , -v0), (p1 , -v1), (p2, -v2), (p3 , -v3)] |
| 72 | + # t : [(p0 , 0), (p1 , 0), (p2, 0), (p3 , 0)] |
| 73 | + # t+1: [(p0+v0, v0), (p1+v1, v1), (p2+v2, v2), (p3+v3, v3)] |
| 74 | + # |
| 75 | + # Denoting the delta in velocity at times t+1 and t-2 (which are the same) as a0, a1, a2, a3, then we have: |
| 76 | + # |
| 77 | + # t-3: [(p0+2*v0+a0, ?), (p1+2*v1+a1, ?), (p2+2*v2+a2, ?), (p3+2*v3+a3, ?)] |
| 78 | + # t-2: [(p0+v0, -v0-a0), (p1+v1, -v1-a1), (p2+v2, -v2-a2), (p3+v3, -v3-a3)] |
| 79 | + # ... |
| 80 | + # t+2: [(p0+2*v0+a0, v0+a0), (p1+2*v1+a1, v1+a1), (p2+2*v2+a2, v2+a2), (p3+2*v3+a3, v3+a3)] |
| 81 | + # |
| 82 | + # This process continues to repeat. |
| 83 | + # So we have this symmetry in velocities on either side of v=0. |
| 84 | + # So, if we ever reach a position with velocities 0, we certainly return to the initial state in t*2. |
| 85 | + # We could just continue to run the simulation to be sure, but might as well cut runtime in half, right? |
| 86 | + return t * 2 if v0 == 0 && v1 == 0 && v2 == 0 && v3 == 0 |
| 87 | + end |
| 88 | +end |
| 89 | + |
| 90 | +verbose = ARGV.delete('-v') |
| 91 | + |
| 92 | +coordinates = ARGF.map { |l| l.scan(/-?\d+/).map(&method(:Integer)) }.transpose.map(&:freeze).freeze |
| 93 | + |
| 94 | +moons1k = coordinates.map(&method(:run1k)).transpose |
| 95 | +puts moons1k.sum { |moon| moon.transpose.map { |c| c.sum(&:abs) }.reduce(:*) } |
| 96 | + |
| 97 | +periods = coordinates.map(&method(:period)) |
| 98 | +p periods if verbose |
| 99 | +puts periods.reduce(1) { |a, b| a.lcm(b) } |
0 commit comments