-
Notifications
You must be signed in to change notification settings - Fork 221
/
Copy pathbayesian_t_test.Rmd
423 lines (303 loc) · 8.15 KB
/
bayesian_t_test.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
# 贝叶斯假设检验 {#bayesian-t-test}
```{r, include=FALSE}
knitr::opts_chunk$set(
echo = TRUE,
warning = FALSE,
message = FALSE,
fig.showtext = TRUE
)
```
```{r}
library(tidyverse)
library(tidybayes)
library(rstan)
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
theme_set(bayesplot::theme_default())
```
## 人们会给爱情片打高分?
这是一个关于电影评分的数据。我们想看下爱情片与动作片的平均得分是否存在显著不同?
```{r}
movies <- read_rds(here::here("demo_data", "movies.rds"))
movies
```
### 可视化探索
看下两种题材电影评分的分布
```{r}
movies %>%
ggplot(aes(x = genre, y = rating, color = genre)) +
geom_boxplot() +
geom_jitter() +
scale_x_discrete(
expand = expansion(mult = c(0.5, 0.5))
) +
theme(legend.position = "none")
```
### 计算均值差
统计两种题材电影评分的均值
```{r}
group_diffs <- movies %>%
group_by(genre) %>%
summarize(avg_rating = mean(rating, na.rm = TRUE)) %>%
mutate(diff_means = avg_rating - lag(avg_rating))
group_diffs
```
### t检验
传统的t检验
```{r}
t.test(
rating ~ genre,
data = movies,
var.equal = FALSE
)
```
## stan 代码
### normal分布
先假定rating评分,服从正态分布,同时不同的电影题材分组考虑
$$
\begin{aligned}
\textrm{rating} & \sim \textrm{normal}(\mu_{\textrm{genre}}, \, \sigma _{\textrm{genre}}) \\
\mu &\sim \textrm{normal}(\textrm{mean_rating}, \, 2) \\
\sigma &\sim \textrm{cauchy}(0, \, 1)
\end{aligned}
$$
```{r, warning=FALSE, message=FALSE}
stan_program <- '
data {
int<lower=1> N;
int<lower=2> n_groups;
vector[N] y;
int<lower=1, upper=n_groups> group_id[N];
}
transformed data {
real mean_y;
mean_y = mean(y);
}
parameters {
vector[2] mu;
vector<lower=0>[2] sigma;
}
model {
mu ~ normal(mean_y, 2);
sigma ~ cauchy(0, 1);
for (n in 1:N){
y[n] ~ normal(mu[group_id[n]], sigma[group_id[n]]);
}
}
generated quantities {
real mu_diff;
mu_diff = mu[2] - mu[1];
}
'
stan_data <- movies %>%
select(genre, rating, genre_numeric) %>%
tidybayes::compose_data(
N = nrow(.),
n_groups = n_distinct(genre),
group_id = genre_numeric,
y = rating
)
stan_best_normal <- stan(model_code = stan_program, data = stan_data)
```
```{r}
stan_best_normal
```
```{r, fig.width = 5, fig.height = 5}
stan_best_normal %>%
tidybayes::spread_draws(mu_diff) %>%
ggplot(aes(x = mu_diff)) +
tidybayes::stat_halfeye() +
geom_vline(xintercept = 0)
```
```{r, fig.width = 5, fig.height = 3}
stan_best_normal %>%
tidybayes::spread_draws(mu_diff) %>%
ggplot(aes(x = mu_diff)) +
stat_eye(side = "right",
fill = "skyblue",
point_interval = mode_hdi,
.width = c(0.5, 0.89),
interval_colour = "red",
point_colour = "red",
width = 15.5,
height = 0.1
) +
geom_vline(xintercept = c(-0.1, 0.1), linetype = "dashed", size = 1) +
coord_cartesian(xlim = c(-1, 2)) +
labs(x = "mu_diff", y = NULL)
```
### 等效检验
我们一般会采用实用等效区间 region of practical equivalence [ROPE](https://easystats.github.io/bayestestR/articles/region_of_practical_equivalence.html)。实用等效区间,就是我们感兴趣值附近的一个区间,比如这里的均值差。频率学中的零假设是看均值差是否为0,贝叶斯则是看均值差有多少落入0附近的区间。具体方法就是,先算出后验分布的高密度区间,然后看这个高密度区间落在[-0.1, 0.1]的比例.
```{r}
lower <- -0.1*sd(movies$rating)
upper <- 0.1*sd(movies$rating)
stan_best_normal %>%
tidybayes::spread_draws(mu_diff) %>%
filter(
mu_diff > ggdist::mean_hdi(mu_diff, .width = c(0.89))$ymin,
mu_diff < ggdist::mean_hdi(mu_diff, .width = c(0.89))$ymax
) %>%
summarise(
percentage_in_rope = mean(between(mu_diff, lower, upper))
)
```
在做假设检验的时候,我们内心是期望,后验概率的**高密度区间**落在**实际等效区间**的比例越小越小,如果小于2.5%,我们就可以拒绝零假设了;如果大于97.5%,我们就接受零假设。
```{r}
stan_best_normal %>%
tidybayes::spread_draws(mu_diff) %>%
pull(mu_diff) %>%
bayestestR::rope(x,
range = c(-0.1, 0.1)*sd(movies$rating),
ci = 0.89,
ci_method = "HDI"
)
```
### Student-t 分布
> 标准正态分布是t分布的极限分布
```{r}
for (nu in c(1, seq(5, 50, by = 10))) {
p <- tibble(x = seq(-5, 5, by=0.1)) %>%
ggplot(aes(x)) +
stat_function(fun = dnorm, color = 'gray') +
stat_function(fun = dt, args = list(df = nu), color = 'blue') +
theme_classic() +
ylab("Density") +
xlab('Value') +
ggtitle(paste("df =", nu))
print(p)
}
```
假定rating评分服从student-t分布,
$$
\begin{aligned}
\textrm{rating} & \sim \textrm{student_t}(\nu, \,\mu_{\textrm{genre}}, \, \sigma _{\textrm{genre}}) \\
\mu &\sim \textrm{normal}(\textrm{mean_rating}, \, 2) \\
\sigma &\sim \textrm{cauchy}(0, \, 1) \\
\nu &\sim \textrm{exponential}(1.0/29)
\end{aligned}
$$
```{r, warning=FALSE, message=FALSE}
stan_program <- '
data {
int<lower=1> N;
int<lower=2> n_groups;
vector[N] y;
int<lower=1, upper=n_groups> group_id[N];
}
transformed data {
real mean_y;
mean_y = mean(y);
}
parameters {
vector[2] mu;
vector<lower=0>[2] sigma;
real<lower=0, upper=100> nu;
}
model {
mu ~ normal(mean_y, 2);
sigma ~ cauchy(0, 1);
nu ~ exponential(1.0/29);
for (n in 1:N){
y[n] ~ student_t(nu, mu[group_id[n]], sigma[group_id[n]]);
}
}
generated quantities {
real mu_diff;
mu_diff = mu[2] - mu[1];
}
'
stan_data <- movies %>%
select(genre, rating, genre_numeric) %>%
tidybayes::compose_data(
N = nrow(.),
n_groups = n_distinct(genre),
group_id = genre_numeric,
y = rating
)
stan_best_student <- stan(model_code = stan_program, data = stan_data)
```
```{r}
stan_best_student
```
```{r, fig.width = 5, fig.height = 5}
stan_best_student %>%
tidybayes::spread_draws(mu_diff) %>%
ggplot(aes(x = mu_diff)) +
tidybayes::stat_halfeye() +
geom_vline(xintercept = 0)
```
```{r}
stan_best_student %>%
as.data.frame() %>%
head()
```
```{r}
stan_best_student %>%
as.data.frame() %>%
ggplot(aes(x = `mu[1]`)) +
geom_density()
```
```{r}
stan_best_student %>%
tidybayes::gather_draws(mu[i], sigma[i]) %>%
tidybayes::mean_hdi(.width = 0.89)
```
## 小结
```{r, out.width = '80%', fig.align = 'center', echo = FALSE}
knitr::include_graphics(here::here("images", "diagram_robust_Bayesian_estimation.png"))
```
## 作业
- 将上一章线性模型的stan代码应用到电影评分数据中
$$
\begin{aligned}
\textrm{rating} & \sim \textrm{Normal}(\mu, \, \sigma) \\
\mu & = \alpha + \beta \, \textrm{genre} \\
\alpha &\sim \textrm{Normal}(0, \, 5) \\
\beta &\sim \textrm{Normal}(0, \, 1) \\
\sigma &\sim \textrm{Exponential}(1) \\
\end{aligned}
$$
```{r, warning=FALSE, message=FALSE}
stan_program <- '
data {
int<lower=1> N;
vector[N] y;
vector[N] x;
}
parameters {
real<lower=0> sigma;
real alpha;
real beta;
}
model {
y ~ normal(alpha + beta * x, sigma);
alpha ~ normal(0, 5);
beta ~ normal(0, 1);
sigma ~ exponential(1);
}
'
stan_data <- list(
N = nrow(movies),
x = as.numeric(movies$genre),
y = movies$rating
)
stan_linear <- stan(model_code = stan_program, data = stan_data)
```
```{r}
stan_linear
```
```{r, fig.width = 5, fig.height = 5}
stan_linear %>%
tidybayes::spread_draws(beta) %>%
ggplot(aes(x = beta)) +
tidybayes::stat_halfeye() +
geom_vline(xintercept = 0)
```
```{r}
stan_linear %>%
tidybayes::gather_draws(beta) %>%
tidybayes::mean_hdi(.width = 0.89)
```
```{r, echo = F, message = F, warning = F, results = "hide"}
pacman::p_unload(pacman::p_loaded(), character.only = TRUE)
```