forked from gorgonia/tensor
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathiterator_mult.go
338 lines (296 loc) · 7.16 KB
/
iterator_mult.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
package tensor
import (
"runtime"
)
// MultIterator is an iterator that iterates over multiple tensors, including masked tensors.
// It utilizes the *AP of a Tensor to determine what the next index is.
// This data structure is similar to Numpy's flatiter, with some standard Go based restrictions of course
// (such as, not allowing negative indices)
type MultIterator struct {
*AP // Uses AP of the largest tensor in list
fit0 *FlatIterator //largest fit in fitArr (by AP total size)
mask []bool
numMasked int
lastIndexArr []int
shape Shape
whichBlock []int
fitArr []*FlatIterator
strides []int
size int
done bool
reverse bool
}
func genIterator(m map[int]int, strides []int, idx int) (int, bool) {
key := hashIntArray(strides)
f, ok := m[key]
if !ok {
m[key] = idx
return idx, ok
}
return f, ok
}
// NewMultIterator creates a new MultIterator from a list of APs
func NewMultIterator(aps ...*AP) *MultIterator {
nit := len(aps)
if nit < 1 {
return nil
}
for _, ap := range aps {
if ap == nil {
panic("ap is nil") //TODO: Probably remove this panic
}
}
var maxDims int
var maxShape = aps[0].shape
for i := range aps {
if aps[i].Dims() >= maxDims {
maxDims = aps[i].Dims()
if aps[i].Size() > maxShape.TotalSize() {
maxShape = aps[i].shape
}
}
}
it := new(MultIterator)
it.whichBlock = BorrowInts(nit)
it.lastIndexArr = BorrowInts(nit)
it.strides = BorrowInts(nit * maxDims)
shape := BorrowInts(len(maxShape))
copy(shape, maxShape)
it.shape = shape
for _, ap := range aps {
_, err := BroadcastStrides(shape, ap.shape, it.strides[:maxDims], ap.strides)
if err != nil {
panic("can not broadcast strides")
}
}
for i := range it.strides {
it.strides[i] = 0
}
it.fitArr = make([]*FlatIterator, nit)
//TODO: Convert this make to Borrow perhaps?
m := make(map[int]int)
nBlocks := 0
offset := 0
for i, ap := range aps {
f, ok := genIterator(m, ap.strides, nBlocks)
if !ok {
offset = nBlocks * maxDims
apStrides, _ := BroadcastStrides(shape, ap.shape, it.strides[offset:offset+maxDims], ap.strides)
copy(it.strides[offset:offset+maxDims], apStrides)
ReturnInts(apStrides) // Borrowed in BroadcastStrides but returned here - dangerous pattern?
nBlocks++
}
ap2 := MakeAP(it.shape[:maxDims], it.strides[offset:offset+maxDims], ap.o, ap.Δ)
it.whichBlock[i] = f
it.fitArr[nBlocks-1] = newFlatIterator(&ap2)
}
it.fitArr = it.fitArr[:nBlocks]
it.strides = it.strides[:nBlocks*maxDims]
// fill 0s with 1s
for i := range it.strides {
if it.strides[i] == 0 {
it.strides[i] = 1
}
}
it.fit0 = it.fitArr[0]
for _, f := range it.fitArr {
if it.fit0.size < f.size {
it.fit0 = f
it.AP = f.AP
}
}
return it
}
// MultIteratorFromDense creates a new MultIterator from a list of dense tensors
func MultIteratorFromDense(tts ...DenseTensor) *MultIterator {
aps := make([]*AP, len(tts))
hasMask := BorrowBools(len(tts))
defer ReturnBools(hasMask)
var masked = false
numMasked := 0
for i, tt := range tts {
aps[i] = tt.Info()
if mt, ok := tt.(MaskedTensor); ok {
hasMask[i] = mt.IsMasked()
}
masked = masked || hasMask[i]
if hasMask[i] {
numMasked++
}
}
it := NewMultIterator(aps...)
runtime.SetFinalizer(it, destroyIterator)
if masked {
// create new mask slice if more than tensor is masked
if numMasked > 1 {
it.mask = BorrowBools(it.shape.TotalSize())
memsetBools(it.mask, false)
for i, err := it.Start(); err == nil; i, err = it.Next() {
for j, k := range it.lastIndexArr {
if hasMask[j] {
it.mask[i] = it.mask[i] || tts[j].(MaskedTensor).Mask()[k]
}
}
}
}
}
it.numMasked = numMasked
return it
}
// destroyMultIterator returns any borrowed objects back to pool
func destroyMultIterator(it *MultIterator) {
if cap(it.whichBlock) > 0 {
ReturnInts(it.whichBlock)
it.whichBlock = nil
}
if cap(it.lastIndexArr) > 0 {
ReturnInts(it.lastIndexArr)
it.lastIndexArr = nil
}
if cap(it.strides) > 0 {
ReturnInts(it.strides)
it.strides = nil
}
if it.numMasked > 1 {
if cap(it.mask) > 0 {
ReturnBools(it.mask)
it.mask = nil
}
}
}
// SetReverse initializes iterator to run backward
func (it *MultIterator) SetReverse() {
for _, f := range it.fitArr {
f.SetReverse()
}
}
// SetForward initializes iterator to run forward
func (it *MultIterator) SetForward() {
for _, f := range it.fitArr {
f.SetForward()
}
}
//Start begins iteration
func (it *MultIterator) Start() (int, error) {
it.Reset()
return it.Next()
}
//Done checks whether iterators are done
func (it *MultIterator) Done() bool {
for _, f := range it.fitArr {
if !f.done {
it.done = false
return false
}
}
it.done = true
return true
}
// Next returns the index of the next coordinate
func (it *MultIterator) Next() (int, error) {
if it.done {
return -1, noopError{}
}
it.done = false
for _, f := range it.fitArr {
if _, err := f.Next(); err != nil {
return -1, err
}
it.done = it.done || f.done
}
for i, j := range it.whichBlock {
it.lastIndexArr[i] = it.fitArr[j].lastIndex
}
return it.fit0.lastIndex, nil
}
func (it *MultIterator) NextValidity() (int, bool, error) {
i, err := it.Next()
if err != nil {
return i, false, err
}
if len(it.mask) == 0 {
return i, true, err
}
return i, it.mask[i], err
}
// NextValid returns the index of the next valid coordinate
func (it *MultIterator) NextValid() (int, int, error) {
var invalid = true
var count int
var mult = 1
if it.reverse {
mult = -1
}
for invalid {
if it.done {
for i, j := range it.whichBlock {
it.lastIndexArr[i] = it.fitArr[j].lastIndex
}
return -1, 0, noopError{}
}
for _, f := range it.fitArr {
f.Next()
it.done = it.done || f.done
}
count++
invalid = !it.mask[it.fit0.lastIndex]
}
return it.fit0.lastIndex, mult * count, nil
}
// NextInvalid returns the index of the next invalid coordinate
func (it *MultIterator) NextInvalid() (int, int, error) {
var valid = true
var count = 0
var mult = 1
if it.reverse {
mult = -1
}
for valid {
if it.done {
for i, j := range it.whichBlock {
it.lastIndexArr[i] = it.fitArr[j].lastIndex
}
return -1, 0, noopError{}
}
for _, f := range it.fitArr {
f.Next()
it.done = it.done || f.done
}
count++
valid = !it.mask[it.fit0.lastIndex]
}
return it.fit0.lastIndex, mult * count, nil
}
// Coord returns the next coordinate.
// When Next() is called, the coordinates are updated AFTER the Next() returned.
// See example for more details.
func (it *MultIterator) Coord() []int {
return it.fit0.track
}
// Reset resets the iterator state.
func (it *MultIterator) Reset() {
for _, f := range it.fitArr {
f.Reset()
}
for i, j := range it.whichBlock {
it.lastIndexArr[i] = it.fitArr[j].lastIndex
}
it.done = false
}
// LastIndex returns index of requested iterator
func (it *MultIterator) LastIndex(j int) int {
return it.lastIndexArr[j]
}
/*
// Chan returns a channel of ints. This is useful for iterating multiple Tensors at the same time.
func (it *FlatIterator) Chan() (retVal chan int) {
retVal = make(chan int)
go func() {
for next, err := it.Next(); err == nil; next, err = it.Next() {
retVal <- next
}
close(retVal)
}()
return
}
*/