-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfns_figures_dataset.py
314 lines (282 loc) · 11.7 KB
/
fns_figures_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import numpy as np
import pandas as pd
import glob
import os
import sys
import datetime
from joblib import Parallel, delayed
import string
from itertools import accumulate
from scipy import interpolate
import seaborn as sns
import matplotlib.pyplot as plt
import ngram
import time
import Levenshtein as lev
from sklearn import random_projection
from sklearn import svm
from sklearn import linear_model
from sklearn import preprocessing
from sklearn import metrics
from sklearn import neural_network
from sklearn import ensemble
CE_HOME = os.environ.get('CE_HOME')
sys.path.append(os.path.abspath(os.path.join(
CE_HOME, 'python', 'categorical_encoding')))
from datasets import Data
from scipy import stats
from fns_categorical_encoding import *
def score_plot(datasets, conditions, condition, score, percentile_thresh=1,
delta_text=0,
delta_top=0, percentile_dict={'levenshtein-ratio': -1,
'jaro-winkler': -1,
'3-gram': -1}):
plt.close("all")
fig, ax = plt.subplots()
# # add similarity distribution ###########################################
# scale = .035
# bins = np.linspace(0, 1, num=11)
# for i, dataset in enumerate(sorted(datasets)):
# data = Data(dataset).get_df()
# sm_cols = [col for col in data.col_action
# if data.col_action[col] == 'se']
# print(dataset)
# distances = []
# for sm_col in sm_cols[:1]:
# print('Column name: %s' % sm_col)
# A = data.df[sm_col][:10000].astype(str)
# B = data.df[sm_col].unique().astype(str)
# sm = similarity_matrix(A, B, conditions['Distance'], -1)
# print(sm.shape)
# # take the 10% highest distances for each value
# sm_nmax = np.array([sorted(row)[:-1]
# for row in sm])
# distances += list(sm_nmax.ravel())
# bin_counts = [0 for bin in bins]
# bin_width = 1/(len(bins)-1)
# distances2 = np.zeros(len(distances))
# for i, distance in enumerate(distances):
# bin_number = int(distance // bin_width)
# bin_counts[bin_number] += 1
# distances2[i] = bin_number * bin_width
# bin_counts = np.array(bin_counts)/len(distances)
# s = interpolate.interp1d(bins, bin_counts)
# kernel = stats.gaussian_kde(distances2, bw_method=.6)
# x = np.linspace(0, 1, 201)
# plt.semilogy(x, s(x)*scale-.02, '--')
# #########################################################################
df_all = pd.DataFrame()
for dataset in sorted(datasets):
data = Data(dataset)
results_path = os.path.join(data.path, 'output', 'results')
figures_path = os.path.join(data.path, 'output', 'figures')
create_folder(data.path, 'output/figures')
files = glob.glob(os.path.join(results_path, '*'))
files, params = file_meet_conditions(dataset, files, conditions)
print('Relevant files:')
for f in files:
print(f.split('..')[-1])
df = pd.read_csv(f)
df = df.drop_duplicates(subset=df.columns[1:])
df_ohe = df[df.threshold == 1.0].set_index('fold')[['score']]
df_ohe.rename(columns={'score': 'score(ohe)'}, inplace=True)
df = df.join(df_ohe, on='fold')
df['score-score(ohe)'] = df['score'] - df['score(ohe)']
df['Dataset'] = data.name
df['Classifier'] = results_parameters(f)['Classifier'][:-4]
df['Distance'] = results_parameters(f)['Distance']
df['TyposProb'] = results_parameters(f)['TyposProb']
percentiles = percentile_dict[results_parameters(f)['Distance']]
percentiles[10] = 100
if percentile_thresh == 1:
for i in range(len(df)):
df.loc[i, 'threshold'] = percentiles[int(df.loc[i, 'threshold']*10)]
name = f.split('/')[-1]
name = name.split('_')
dict_name = {}
for n in name:
key, value = [n.split('-')[0], '-'.join(n.split('-')[1:])]
dict_name[key] = value
df_all = pd.concat([df_all, df], axis=0)
if percentile_thresh == 1:
df_all = df_all.drop_duplicates(subset=['threshold', 'Distance', 'fold'])
# plot scores
values = df_all[condition].unique()
sns.set_palette(set_colors(values, condition))
sns.tsplot(data=df_all, time='threshold', unit='fold',
condition=condition,
value=score, ci=95,
ax=ax, marker='.',
markersize=10)
max_all = df_all[score].max()
min_all = df_all[score].min()
if min_all <= 0:
ax.axhline(y=0, xmin=-10, xmax=110, linewidth=1, color='grey')
sns.plt.ylim([min_all, max_all])
sns.despine(bottom=True, right=False, trim=True)
sns.despine()
sns.plt.xlim([-10, 110])
sns.plt.ylim([min_all-(max_all-min_all)*.1,
max_all+(max_all-min_all)*.1 + delta_top])
df.groupby('threshold')
mean_score_ohe = np.mean(df[score][df.threshold == 1])
ax.text(0, min_all+delta_text, 'Raw\nsimilarity\nencoding', fontsize=14,
horizontalalignment='center', verticalalignment='top',
color='gray')
ax.text(100, min_all+delta_text, 'One-hot\nencoding',
fontsize=14, color='gray',
horizontalalignment='center',
verticalalignment='top')
ax.set_xlabel('Hard-thresholding value', fontsize=16)
if score == 'score':
ax.set_ylabel('Score', fontsize=16)
elif score == 'score-score(ohe)':
ax.set_ylabel('Score - Score(one-hot-encoding)', fontsize=16)
ax.tick_params(axis='both', which='major', labelsize=14)
leg = ax.get_legend()
leg = ax.legend(fontsize=14, ncol=1)
leg.set_title(condition, prop={'size': 16})
# sns.axes_style()
# sns._orig_rc_params
return ax
def distances_dist(datasets, conditions, scale=1):
plt.close("all")
fig, ax = plt.subplots()
bins = np.linspace(0, 1, num=11)
for i, dataset in enumerate(sorted(datasets)):
data = Data(dataset).get_df()
sm_cols = [col for col in data.col_action
if data.col_action[col] == 'se']
print(dataset)
distances = []
for sm_col in sm_cols[:1]:
print('Column name: %s' % sm_col)
A = data.df[sm_col][:10000].astype(str)
B = data.df[sm_col].unique().astype(str)
sm = similarity_matrix(A, B, conditions['Distance'], -1)
# print(sm.shape)
# # take the 10% highest distances for each value
# sm_nmax = np.array([sorted(row)[:-1]
# for row in sm])
# distances += list(sm_nmax.ravel())
# bin_counts = [0 for bin in bins]
# bin_width = 1/(len(bins)-1)
# distances2 = np.zeros(len(distances))
# for i, distance in enumerate(distances):
# bin_number = int(distance // bin_width)
# bin_counts[bin_number] += 1
# distances2[i] = bin_number * bin_width
# bin_counts = np.array(bin_counts) #/len(distances)
# s = interpolate.interp1d(bins, bin_counts)
# kernel = stats.gaussian_kde(distances2, bw_method=.6)
x = np.linspace(0, 1, 11)
# y = list(reversed(list(accumulate(list(reversed(bin_counts))))))
# plt.semilogy(x, s(x)*scale, label=dataset)
plt.semilogy(x, ball_elements(sm, bins)/sm.shape[0],
label=dataset)
plt.legend(fontsize=14)
sns.plt.xlim([0, 1])
sns.plt.ylim([1, 2000])
# sns.despine(bottom=False, left=False, right=True, trim=True)
# plt.yticks([], [])
# y_ticks = np.array([val/10 for val in ax.get_yticks()])
# ax.set_yticklabels(y_ticks)
ax.set_xlabel('Similarity', fontsize=16)
ax.tick_params(axis='x', which='major', labelsize=14)
filename = 'DistanceDist_' + '_'.join([key + '-' + conditions[key]
for key in conditions]) + '.pdf'
plt.savefig(os.path.join(os.getcwd(), '..', 'figures', filename),
transparent=False, bbox_inches='tight', pad_inches=0.2)
def word_freq(datasets, conditions):
plt.close("all")
fig, ax = plt.subplots()
values = sorted(datasets)
sns.set_palette(set_colors(values, 'Dataset'))
for i, dataset in enumerate(sorted(datasets)):
data = Data(dataset).get_df()
sm_cols = [col for col in data.col_action
if data.col_action[col] == 'se']
for sm_col in sm_cols[:1]:
counts = data.df[sm_col].value_counts()
# Plot histogram using matplotlib bar().
indexes = list(counts.index)
vals = counts.values
f = interpolate.interp1d(np.linspace(0, 1, len(indexes)), vals)
x = np.linspace(0, 1, 1000)
plt.semilogy(x, f(x), label=dataset, linewidth=3.0)
plt.legend(fontsize=14)
sns.plt.ylim([1, ax.get_ylim()[1]])
sns.despine(bottom=True, right=False, trim=True)
sns.despine()
sns.plt.xlim([-.03, 1.03])
sns.plt.ylim([pow(10, -.2), ax.get_ylim()[1]])
plt.xticks([0, 1], ['', ''])
plt.minorticks_off()
ax.set_xlabel('Classes', fontsize=16)
ax.set_ylabel('log(Frequency)', fontsize=16)
ax.tick_params(axis='both', which='major', labelsize=14)
filename = ('ClassFreq_' + '_'.join([key + '-' + conditions[key]
for key in conditions]) + '.pdf')
plt.savefig(os.path.join(os.getcwd(), '..', 'figures', filename),
transparent=False, bbox_inches='tight', pad_inches=0.2)
def ball_elements(SE, bins):
output = np.zeros(len(bins))
for i, bin_ in enumerate(bins):
for row in SE:
output[i] += len(row[row >= bin_])
return output
def number_elements_in_ball_by_row(A, radiuses):
outputs = []
radiuses = sorted(radiuses)
for i, row in enumerate(A):
if i/1000.0 == int(i/1000.0):
print(i)
row = sorted(row)
j = 0
output_row = []
for radius in radiuses:
while row[j] <= radius:
j += 1
output_row.append(j)
outputs.append(output_row)
return outputs
def set_list(condition, clf_type='None'):
if clf_type == 'regression':
if condition == 'Classifier':
cnd_dict = {'Ridge': 0,
'GradientBoosting': 2,
'RandomForest': 3,
'MLP': 5,
'KNeighbors': 4}
else:
if condition == 'Classifier':
cnd_dict = {'Ridge': 0,
'LogisticRegression': 1,
'GradientBoosting': 2,
'RandomForest': 3,
'MLP': 5,
'KNeighbors': 4}
if condition == 'Dataset':
cnd_dict = {'docs_payments': 0,
'midwest_survey': 1,
'medical_charge': 2,
'adult': 3,
'beer_reviews': 4,
'road_safety': 5,
'employee_salaries': 6,
'indultos_espana': 7}
if condition == 'Distance':
cnd_dict = {'one-hot': 4,
'levenshtein-ratio': 0,
'3-gram': 1,
'sorensen': 5,
'jaccard': 2,
'jaro-winkler': 3}
if condition == 'TyposProb':
cnd_dict = {'0.00': 0,
'0.01': 1,
'0.02': 2,
'0.05': 3,
'0.10': 4,
'0.20': 5}
return cnd_dict