Skip to content

Commit 9c0749c

Browse files
committed
minor refactor
1 parent 6edd968 commit 9c0749c

File tree

2 files changed

+6
-6
lines changed

2 files changed

+6
-6
lines changed

README.md

+4-4
Original file line numberDiff line numberDiff line change
@@ -135,7 +135,7 @@ or using a Jupyter/BeakerX notebook.
135135
| | Technologies/libraries covered |
136136
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
137137
| Data manipulation | [Weka], [Tablesaw], [Encog], [JSAT], [Datavec], [Tribuo] |
138-
| Classification | [Weka], [Smile], [Encog], [Tribuo], [JSAT], [Deep Learning4J], [Deep Netts] |
138+
| Classification | [Weka], [Smile], [Encog], [Tribuo], [JSAT], [Eclipse DeepLearning4J], [Deep Netts] |
139139
| Visualization | [XChart], [Tablesaw Plot.ly], [JavaFX] |
140140
| Main aspects/algorithms covered | Reading csv, dataframes, visualization, exploration, naive bayes, logistic regression, knn regression, softmax regression, decision trees, support vector machine |
141141
| Other aspects/algorithms covered | neural networks, multilayer perceptron, PCA |
@@ -170,13 +170,13 @@ This example looks at using neural networks for digit recognition.
170170
More details can be found in the [Mnist](subprojects/Mnist/) subproject.
171171
It contains examples using hand-written neural networks with
172172
[Apache Commons Math] used for matrix calculations
173-
and multilayer perceptron examples using [Deep Learning4J].
173+
and multilayer perceptron examples using [Eclipse DeepLearning4J].
174174
There is also a logistic regression example using [Tribuo].
175175

176176
| | Technologies/libraries covered |
177177
|---------------------------|------------------------------------------|
178178
| Logistic regression (SGD) | [Tribuo] |
179-
| Neural networks | [Apache Commons Math], [Deep Learning4J] |
179+
| Neural networks | [Apache Commons Math], [Eclipse DeepLearning4J] |
180180

181181
## Deep-learning Object detection with DJL and Apache MXNet
182182

@@ -276,7 +276,7 @@ Details can be found in the related website: [groovy-constraint-programming/Monk
276276
[CoreNLP]: https://stanfordnlp.github.io/CoreNLP/
277277
[Apache Tika]: https://tika.apache.org/
278278
[Apache Camel]: https://camel.apache.org/
279-
[Deep Learning4J]: https://deeplearning4j.org/
279+
[Eclipse DeepLearning4J]: https://deeplearning4j.konduit.ai/
280280
[Datavec]: https://github.com/deeplearning4j/DataVec
281281
[Choco]: http://www.choco-solver.org/
282282
[Apache Spark]: https://spark.apache.org/

subprojects/Mnist/README.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ The examples illustrate:
1313
* hand-written neural networks with
1414
[Apache Commons Math](https://commons.apache.org/proper/commons-math/) used for matrix calculations
1515
* multilayer perceptron examples using
16-
[Deep Learning4J](https://deeplearning4j.org/)
16+
[Eclipse DeepLearning4J](https://deeplearning4j.konduit.ai/)
1717

1818
If you have opened the repo in IntelliJ (or your favourite IDE) you should be able to execute the examples directly in the IDE.
1919

@@ -37,7 +37,7 @@ MLP uses a supervised learning technique known as back-propagation for training.
3737

3838
The [OneLayerMLP](src/main/groovy/OneLayerMLP.groovy)
3939
and [TwoLayerMLP](src/main/groovy/TwoLayerMLP.groovy) examples use
40-
[Deep Learning4J](https://deeplearning4j.org/).
40+
[Eclipse DeepLearning4J](https://deeplearning4j.konduit.ai/).
4141

4242
The [MnistTrainer](src/main/groovy/MnistTrainer.groovy) script reads the MNIST dataset and trains and saves the neural network.
4343
You only need to run this if you want to tweak or re-generate the model.

0 commit comments

Comments
 (0)