@@ -135,7 +135,7 @@ or using a Jupyter/BeakerX notebook.
135
135
| | Technologies/libraries covered |
136
136
| ----------------------------------| -------------------------------------------------------------------------------------------------------------------------------------------------------------------|
137
137
| Data manipulation | [ Weka] , [ Tablesaw] , [ Encog] , [ JSAT] , [ Datavec] , [ Tribuo] |
138
- | Classification | [ Weka] , [ Smile] , [ Encog] , [ Tribuo] , [ JSAT] , [ Deep Learning4J ] , [ Deep Netts] |
138
+ | Classification | [ Weka] , [ Smile] , [ Encog] , [ Tribuo] , [ JSAT] , [ Eclipse DeepLearning4J ] , [ Deep Netts] |
139
139
| Visualization | [ XChart] , [ Tablesaw Plot.ly] , [ JavaFX] |
140
140
| Main aspects/algorithms covered | Reading csv, dataframes, visualization, exploration, naive bayes, logistic regression, knn regression, softmax regression, decision trees, support vector machine |
141
141
| Other aspects/algorithms covered | neural networks, multilayer perceptron, PCA |
@@ -170,13 +170,13 @@ This example looks at using neural networks for digit recognition.
170
170
More details can be found in the [ Mnist] ( subprojects/Mnist/ ) subproject.
171
171
It contains examples using hand-written neural networks with
172
172
[ Apache Commons Math] used for matrix calculations
173
- and multilayer perceptron examples using [ Deep Learning4J ] .
173
+ and multilayer perceptron examples using [ Eclipse DeepLearning4J ] .
174
174
There is also a logistic regression example using [ Tribuo] .
175
175
176
176
| | Technologies/libraries covered |
177
177
| ---------------------------| ------------------------------------------|
178
178
| Logistic regression (SGD) | [ Tribuo] |
179
- | Neural networks | [ Apache Commons Math] , [ Deep Learning4J ] |
179
+ | Neural networks | [ Apache Commons Math] , [ Eclipse DeepLearning4J ] |
180
180
181
181
## Deep-learning Object detection with DJL and Apache MXNet
182
182
@@ -276,7 +276,7 @@ Details can be found in the related website: [groovy-constraint-programming/Monk
276
276
[ CoreNLP ] : https://stanfordnlp.github.io/CoreNLP/
277
277
[ Apache Tika ] : https://tika.apache.org/
278
278
[ Apache Camel ] : https://camel.apache.org/
279
- [ Deep Learning4J ] : https://deeplearning4j.org /
279
+ [ Eclipse DeepLearning4J ] : https://deeplearning4j.konduit.ai /
280
280
[ Datavec ] : https://github.com/deeplearning4j/DataVec
281
281
[ Choco ] : http://www.choco-solver.org/
282
282
[ Apache Spark ] : https://spark.apache.org/
0 commit comments