|
11 | 11 |
|
12 | 12 | import numpy as np
|
13 | 13 |
|
14 |
| -from pandas._config import get_option |
| 14 | +from pandas._config import using_pdep16_nan_behavior |
15 | 15 |
|
16 | 16 | from pandas._libs import (
|
17 | 17 | lib,
|
@@ -310,7 +310,7 @@ def __setitem__(self, key, value) -> None:
|
310 | 310 | def __contains__(self, key) -> bool:
|
311 | 311 | if isna(key) and key is not self.dtype.na_value:
|
312 | 312 | # GH#52840
|
313 |
| - if lib.is_float(key) and get_option("mode.PDEP16_nan_behavior"): |
| 313 | + if lib.is_float(key) and using_pdep16_nan_behavior(): |
314 | 314 | key = self.dtype.na_value
|
315 | 315 | elif self._data.dtype.kind == "f" and lib.is_float(key):
|
316 | 316 | return bool((np.isnan(self._data) & ~self._mask).any())
|
@@ -659,7 +659,7 @@ def reconstruct(x: np.ndarray):
|
659 | 659 | # reached in e.g. np.sqrt on BooleanArray
|
660 | 660 | # we don't support float16
|
661 | 661 | x = x.astype(np.float32)
|
662 |
| - if get_option("mode.PDEP16_nan_behavior"): |
| 662 | + if using_pdep16_nan_behavior(): |
663 | 663 | m[np.isnan(x)] = True
|
664 | 664 | return FloatingArray(x, m)
|
665 | 665 | else:
|
@@ -866,7 +866,7 @@ def _maybe_mask_result(
|
866 | 866 | if result.dtype.kind == "f":
|
867 | 867 | from pandas.core.arrays import FloatingArray
|
868 | 868 |
|
869 |
| - if get_option("mode.PDEP16_nan_behavior"): |
| 869 | + if using_pdep16_nan_behavior(): |
870 | 870 | mask[np.isnan(result)] = True
|
871 | 871 |
|
872 | 872 | return FloatingArray(result, mask, copy=False)
|
|
0 commit comments