Skip to content

Commit 299637d

Browse files
committed
chore: Bump version to 0.12.0 for release (Refs release)
1 parent 315d2e2 commit 299637d

File tree

2 files changed

+67
-1
lines changed

2 files changed

+67
-1
lines changed

CHANGELOG.md

Lines changed: 66 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -7,6 +7,72 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
77

88
## [Unreleased]
99

10+
## [0.12.0] - 2025-11-27
11+
12+
### **Major Release: Advanced Neural Networks & Program Repair**
13+
14+
This release adds cutting-edge ML capabilities including Graph Neural Networks, RNN/LSTM/GRU, Variational Autoencoders, and a novel Compiler-in-the-Loop Learning system.
15+
16+
### Added
17+
18+
#### Compiler-in-the-Loop Learning (`citl` module)
19+
- **CITL**: Neural-guided automated program repair
20+
- Transformer-based neural encoder for compiler diagnostics
21+
- Contrastive learning with InfoNCE loss
22+
- Pattern library with 21 Rust-specific fix templates
23+
- Iterative fix loop with confidence thresholds
24+
- GPU/CPU backend support via Trueno
25+
26+
#### Graph Neural Networks (`gnn` module)
27+
- **GCN**: Graph Convolutional Networks
28+
- **GAT**: Graph Attention Networks with multi-head attention
29+
- **GraphSAGE**: Inductive learning on large graphs
30+
- Message passing framework with customizable aggregation
31+
32+
#### Recurrent Neural Networks (`nn/rnn` module)
33+
- **RNN**: Vanilla recurrent networks
34+
- **LSTM**: Long Short-Term Memory with forget gates
35+
- **GRU**: Gated Recurrent Units
36+
- Bidirectional variants for all architectures
37+
38+
#### Variational Autoencoders (`nn/vae` module)
39+
- **VAE**: Standard variational autoencoder
40+
- **BetaVAE**: Disentangled representations with β parameter
41+
- **ConditionalVAE**: Class-conditional generation
42+
- Reparameterization trick for backpropagation
43+
44+
#### Model Interpretability (`interpret` module)
45+
- **SHAP**: SHapley Additive exPlanations
46+
- **LIME**: Local Interpretable Model-agnostic Explanations
47+
- Feature importance visualization
48+
- Partial dependence plots
49+
50+
#### Transfer Learning (`transfer` module)
51+
- Pre-trained model loading
52+
- Feature extraction mode
53+
- Fine-tuning with layer freezing
54+
- Domain adaptation utilities
55+
56+
#### Additional Features
57+
- **Active Learning** (`active_learning`): Uncertainty sampling, query-by-committee
58+
- **Probability Calibration** (`calibration`): Platt scaling, isotonic regression
59+
- **Self-Supervised Learning** (`nn/self_supervised`): Contrastive pretraining
60+
- **Model Quantization** (`nn/quantization`): INT8 quantization for inference
61+
- **Text Generation** (`nn/generation`): Autoregressive text generation
62+
63+
### Quality Metrics
64+
65+
**Test Count:** 3,331 tests (unit + property + integration + doc)
66+
**Test Coverage:** 96.94% line coverage
67+
**Clippy:** 0 warnings in production code
68+
**Zero Defects:** Toyota Way compliance maintained
69+
70+
### Documentation
71+
72+
- Book chapters for all new modules
73+
- CITL automated repair case study
74+
- Examples for GNN, RNN, VAE usage
75+
1076
## [0.8.0] - 2025-11-25
1177

1278
### **NEW FEATURE: Content-Based Recommendation System**

Cargo.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -63,7 +63,7 @@ large_stack_arrays = "allow" # ML tests often need large data arrays
6363

6464
[package]
6565
name = "aprender"
66-
version = "0.11.0"
66+
version = "0.12.0"
6767
edition = "2021"
6868
rust-version = "1.70"
6969
authors = ["Noah Gift <[email protected]>"]

0 commit comments

Comments
 (0)