-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathgenerate.py
77 lines (58 loc) · 2.53 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import tensorflow as tf
import numpy as np
import argparse
import model_config
import data_loader
from ByteNet import generator
import utils
import shutil
import time
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--sample_size', type=int, default=300,
help='Sampled output size')
parser.add_argument('--top_k', type=int, default=5,
help='Sample from top k predictions')
parser.add_argument('--model_path', type=str, default=None,
help='Pre-Trained Model Path, to resume from')
parser.add_argument('--text_dir', type=str, default='Data/generator_training_data',
help='Directory containing text files')
parser.add_argument('--data_dir', type=str, default='Data',
help='Data Directory')
parser.add_argument('--seed', type=str, default='All',
help='Seed for text generation')
args = parser.parse_args()
# model_config = json.loads( open('model_config.json').read() )
config = model_config.predictor_config
dl = data_loader.Data_Loader({'model_type' : 'generator', 'dir_name' : args.text_dir})
_, vocab = dl.load_generator_data(config['sample_size'])
model_options = {
'vocab_size' : len(vocab),
'residual_channels' : config['residual_channels'],
'dilations' : config['dilations'],
'filter_width' : config['filter_width'],
}
generator_model = generator.ByteNet_Generator( model_options )
generator_model.build_generator()
sess = tf.InteractiveSession()
tf.initialize_all_variables().run()
saver = tf.train.Saver()
if args.model_path:
saver.restore(sess, args.model_path)
seed_sentence = np.array([dl.string_to_indices(args.seed, vocab)], dtype = 'int32' )
for col in range(args.sample_size):
[probs] = sess.run([generator_model.g_probs],
feed_dict = {
generator_model.seed_sentence :seed_sentence
})
curr_preds = []
for bi in range(probs.shape[0]):
pred_word = utils.sample_top(probs[bi][-1], top_k = args.top_k )
curr_preds.append(pred_word)
seed_sentence = np.insert(seed_sentence, seed_sentence.shape[1], curr_preds, axis = 1)
print col, dl.inidices_to_string(seed_sentence[0], vocab)
f = open('Data/generator_sample.txt', 'wb')
f.write(dl.inidices_to_string(seed_sentence[0], vocab))
f.close()
if __name__ == '__main__':
main()