forked from pedvide/ADC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathADC_Module.cpp
1722 lines (1497 loc) · 52.1 KB
/
ADC_Module.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Teensy 4.x, 3.x, LC ADC library
* https://github.com/pedvide/ADC
* Copyright (c) 2020 Pedro Villanueva
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/* ADC_Module.cpp: Implements the fuctions of a Teensy 3.x, LC ADC module
*
*/
#include "ADC_Module.h"
// include the internal reference
#ifdef ADC_USE_INTERNAL_VREF
#include <VREF.h>
#endif
/* Constructor
* Point the registers to the correct ADC module
* Copy the correct channel2sc1a
* Call init
*/
ADC_Module::ADC_Module(uint8_t ADC_number,
const uint8_t *const a_channel2sc1a,
#if ADC_DIFF_PAIRS > 0
const ADC_NLIST *const a_diff_table,
#endif
ADC_REGS_t &a_adc_regs) : ADC_num(ADC_number), channel2sc1a(a_channel2sc1a)
#if ADC_DIFF_PAIRS > 0
,
diff_table(a_diff_table)
#endif
,
adc_regs(a_adc_regs)
#ifdef ADC_USE_PDB
,
PDB0_CHnC1(ADC_num ? PDB0_CH1C1 : PDB0_CH0C1)
#endif
#if defined(ADC_TEENSY_4)
,
XBAR_IN(ADC_num ? XBARA1_IN_QTIMER4_TIMER3 : XBARA1_IN_QTIMER4_TIMER0), XBAR_OUT(ADC_num ? XBARA1_OUT_ADC_ETC_TRIG10 : XBARA1_OUT_ADC_ETC_TRIG00), QTIMER4_INDEX(ADC_num ? 3 : 0), ADC_ETC_TRIGGER_INDEX(ADC_num ? 4 : 0), IRQ_ADC(ADC_num ? IRQ_NUMBER_t::IRQ_ADC2 : IRQ_NUMBER_t::IRQ_ADC1)
#elif defined(ADC_DUAL_ADCS)
// IRQ_ADC0 and IRQ_ADC1 aren't consecutive in Teensy 3.6
// fix by SB, https://github.com/pedvide/ADC/issues/19
,
IRQ_ADC(ADC_num ? IRQ_NUMBER_t::IRQ_ADC1 : IRQ_NUMBER_t::IRQ_ADC0)
#else
,
IRQ_ADC(IRQ_NUMBER_t::IRQ_ADC0)
#endif
{
// call our init
analog_init();
}
/* Initialize stuff:
* - Switch on clock
* - Clear all fail flags
* - Internal reference (default: external vcc)
* - Mux between a and b channels (b channels)
* - Calibrate with 32 averages and low speed
* - When first calibration is done it sets:
* - Resolution (default: 10 bits)
* - Conversion speed and sampling time (both set to medium speed)
* - Averaging (set to 4)
*/
void ADC_Module::analog_init()
{
startClock();
// default settings:
/*
- 10 bits resolution
- 4 averages
- vcc reference
- no interrupts
- pga gain=1
- conversion speed = medium
- sampling speed = medium
initiate to 0 (or 1) so the corresponding functions change it to the correct value
*/
analog_res_bits = 0;
analog_max_val = 0;
analog_num_average = 0;
analog_reference_internal = ADC_REF_SOURCE::REF_NONE;
#ifdef ADC_USE_PGA
pga_value = 1;
#endif
interrupts_enabled = false;
#ifdef ADC_TEENSY_4
// overwrite old values if a new conversion ends
atomic::setBitFlag(adc_regs.CFG, ADC_CFG_OVWREN);
// this is the only option for Teensy 3.x and LC
#endif
conversion_speed = ADC_CONVERSION_SPEED::HIGH_SPEED; // set to something different from line 139 so it gets changed there
sampling_speed = ADC_SAMPLING_SPEED::VERY_HIGH_SPEED;
calibrating = 0;
fail_flag = ADC_ERROR::CLEAR; // clear all errors
num_measurements = 0;
// select b channels
#ifdef ADC_TEENSY_4
// T4 has no a or b channels
#else
// ADC_CFG2_muxsel = 1;
atomic::setBitFlag(adc_regs.CFG2, ADC_CFG2_MUXSEL);
#endif
// set reference to vcc
setReference(ADC_REFERENCE::REF_3V3);
// set resolution to 10
setResolution(10);
// the first calibration will use 32 averages and lowest speed,
// when this calibration is over the averages and speed will be set to default by wait_for_cal and init_calib will be cleared.
init_calib = 1;
setAveraging(32);
setConversionSpeed(ADC_CONVERSION_SPEED::LOW_SPEED);
setSamplingSpeed(ADC_SAMPLING_SPEED::LOW_SPEED);
// begin init calibration
calibrate();
}
// starts calibration
void ADC_Module::calibrate()
{
__disable_irq();
calibrating = 1;
#ifdef ADC_TEENSY_4
atomic::clearBitFlag(adc_regs.GC, ADC_GC_CAL);
atomic::setBitFlag(adc_regs.GS, ADC_GS_CALF);
atomic::setBitFlag(adc_regs.GC, ADC_GC_CAL);
#else
// ADC_SC3_cal = 0; // stop possible previous calibration
atomic::clearBitFlag(adc_regs.SC3, ADC_SC3_CAL);
// ADC_SC3_calf = 1; // clear possible previous error
atomic::setBitFlag(adc_regs.SC3, ADC_SC3_CALF);
// ADC_SC3_cal = 1; // start calibration
atomic::setBitFlag(adc_regs.SC3, ADC_SC3_CAL);
#endif
__enable_irq();
}
/* Waits until calibration is finished and writes the corresponding registers
*
*/
void ADC_Module::wait_for_cal(void)
{
// wait for calibration to finish
#ifdef ADC_TEENSY_4
while (atomic::getBitFlag(adc_regs.GC, ADC_GC_CAL))
{ // Bit ADC_GC_CAL in register GC cleared when calib. finishes.
yield();
}
if (atomic::getBitFlag(adc_regs.GS, ADC_GS_CALF))
{ // calibration failed
fail_flag |= ADC_ERROR::CALIB; // the user should know and recalibrate manually
}
#else
while (atomic::getBitFlag(adc_regs.SC3, ADC_SC3_CAL))
{ // Bit ADC_SC3_CAL in register ADC0_SC3 cleared when calib. finishes.
yield();
}
if (atomic::getBitFlag(adc_regs.SC3, ADC_SC3_CALF))
{ // calibration failed
fail_flag |= ADC_ERROR::CALIB; // the user should know and recalibrate manually
}
#endif
// set calibrated values to registers
#ifdef ADC_TEENSY_4
// T4 does not require anything else for calibration
#else
__disable_irq();
uint16_t sum;
if (calibrating)
{
sum = adc_regs.CLPS + adc_regs.CLP4 + adc_regs.CLP3 + adc_regs.CLP2 + adc_regs.CLP1 + adc_regs.CLP0;
sum = (sum / 2) | 0x8000;
adc_regs.PG = sum;
sum = adc_regs.CLMS + adc_regs.CLM4 + adc_regs.CLM3 + adc_regs.CLM2 + adc_regs.CLM1 + adc_regs.CLM0;
sum = (sum / 2) | 0x8000;
adc_regs.MG = sum;
}
__enable_irq();
#endif
calibrating = 0;
// the first calibration uses 32 averages and lowest speed,
// when this calibration is over, set the averages and speed to default.
if (init_calib)
{
// set conversion speed to medium
setConversionSpeed(ADC_CONVERSION_SPEED::MED_SPEED);
// set sampling speed to medium
setSamplingSpeed(ADC_SAMPLING_SPEED::MED_SPEED);
// number of averages to 4
setAveraging(4);
init_calib = 0; // clear
}
}
//! Starts the calibration sequence, waits until it's done and writes the results
/** Usually it's not necessary to call this function directly, but do it if the "environment" changed
* significantly since the program was started.
*/
void ADC_Module::recalibrate()
{
calibrate();
wait_for_cal();
}
/////////////// METHODS TO SET/GET SETTINGS OF THE ADC ////////////////////
/* Set the voltage reference you prefer, default is 3.3V
* It needs to recalibrate
* Use ADC_REF_3V3, ADC_REF_1V2 (not for Teensy LC) or ADC_REF_EXT
*/
void ADC_Module::setReference(ADC_REFERENCE type)
{
ADC_REF_SOURCE ref_type = static_cast<ADC_REF_SOURCE>(type); // cast to source type, that is, either internal or default
if (analog_reference_internal == ref_type)
{ // don't need to change anything
return;
}
if (ref_type == ADC_REF_SOURCE::REF_ALT)
{ // 1.2V ref for Teensy 3.x, 3.3 VDD for Teensy LC
// internal reference requested
#ifdef ADC_USE_INTERNAL_VREF
VREF::start(); // enable VREF if Teensy 3.x
#endif
analog_reference_internal = ADC_REF_SOURCE::REF_ALT;
#ifdef ADC_TEENSY_4
// No REF_ALT for T4
#else
// *ADC_SC2_ref = 1; // uses bitband: atomic
atomic::setBitFlag(adc_regs.SC2, ADC_SC2_REFSEL(1));
#endif
}
else if (ref_type == ADC_REF_SOURCE::REF_DEFAULT)
{ // ext ref for all Teensys, vcc also for Teensy 3.x
// vcc or external reference requested
#ifdef ADC_USE_INTERNAL_VREF
VREF::stop(); // disable 1.2V reference source when using the external ref (p. 102, 3.7.1.7)
#endif
analog_reference_internal = ADC_REF_SOURCE::REF_DEFAULT;
#ifdef ADC_TEENSY_4
atomic::clearBitFlag(adc_regs.CFG, ADC_CFG_REFSEL(3));
#else
// *ADC_SC2_ref = 0; // uses bitband: atomic
atomic::clearBitFlag(adc_regs.SC2, ADC_SC2_REFSEL(1));
#endif
}
calibrate();
}
/* Change the resolution of the measurement
* For single-ended measurements: 8, 10, 12 or 16 bits.
* For differential measurements: 9, 11, 13 or 16 bits.
* If you want something in between (11 bits single-ended for example) select the inmediate higher
* and shift the result one to the right.
*
* It doesn't recalibrate
*/
void ADC_Module::setResolution(uint8_t bits)
{
if (analog_res_bits == bits)
{
return;
}
uint8_t config;
if (calibrating)
wait_for_cal();
if (bits <= 9)
{
config = 8;
}
else if (bits <= 11)
{
config = 10;
#ifdef ADC_TEENSY_4
}
else if (bits > 11)
{
config = 12;
#else
}
else if (bits <= 13)
{
config = 12;
}
else if (bits > 13)
{
config = 16;
#endif
}
else
{
config = 8; // default to 8 bits
}
// conversion resolution
// single-ended 8 bits is the same as differential 9 bits, etc.
if ((config == 8) || (config == 9))
{
#ifdef ADC_TEENSY_4
atomic::clearBitFlag(adc_regs.CFG, ADC_CFG_MODE(3));
#else
// *ADC_CFG1_mode1 = 0;
// *ADC_CFG1_mode0 = 0;
atomic::clearBitFlag(adc_regs.CFG1, ADC_CFG1_MODE(3));
#endif
analog_max_val = 255; // diff mode 9 bits has 1 bit for sign, so max value is the same as single 8 bits
}
else if ((config == 10) || (config == 11))
{
#ifdef ADC_TEENSY_4
atomic::changeBitFlag(adc_regs.CFG, ADC_CFG_MODE(3), ADC_CFG_MODE(1));
#else
// *ADC_CFG1_mode1 = 1;
// *ADC_CFG1_mode0 = 0;
atomic::changeBitFlag(adc_regs.CFG1, ADC_CFG1_MODE(3), ADC_CFG1_MODE(2));
#endif
analog_max_val = 1023;
}
else if ((config == 12) || (config == 13))
{
#ifdef ADC_TEENSY_4
atomic::changeBitFlag(adc_regs.CFG, ADC_CFG_MODE(3), ADC_CFG_MODE(2));
#else
// *ADC_CFG1_mode1 = 0;
// *ADC_CFG1_mode0 = 1;
atomic::changeBitFlag(adc_regs.CFG1, ADC_CFG1_MODE(3), ADC_CFG1_MODE(1));
#endif
analog_max_val = 4095;
}
else
{
#ifdef ADC_TEENSY_4
// Impossible for T4
#else
// *ADC_CFG1_mode1 = 1;
// *ADC_CFG1_mode0 = 1;
atomic::setBitFlag(adc_regs.CFG1, ADC_CFG1_MODE(3));
#endif
analog_max_val = 65535;
}
analog_res_bits = config;
// no recalibration is needed when changing the resolution, p. 619
}
/* Returns the resolution of the ADC
*
*/
uint8_t ADC_Module::getResolution()
{
return analog_res_bits;
}
/* Returns the maximum value for a measurement, that is: 2^resolution-1
*
*/
uint32_t ADC_Module::getMaxValue()
{
return analog_max_val;
}
// Sets the conversion speed
/* Increase the sampling speed for low impedance sources, decrease it for higher impedance ones.
* \param speed can be any of the ADC_SAMPLING_SPEED enum: VERY_LOW_SPEED, LOW_SPEED, MED_SPEED, HIGH_SPEED or VERY_HIGH_SPEED.
*
* VERY_LOW_SPEED is the lowest possible sampling speed (+24 ADCK).
* LOW_SPEED adds +16 ADCK.
* MED_SPEED adds +10 ADCK.
* HIGH_SPEED adds +6 ADCK.
* VERY_HIGH_SPEED is the highest possible sampling speed (0 ADCK added).
*/
void ADC_Module::setConversionSpeed(ADC_CONVERSION_SPEED speed)
{
if (speed == conversion_speed)
{ // no change
return;
}
//if (calibrating) wait_for_cal();
bool is_adack = false;
uint32_t ADC_CFG1_speed = 0; // store the clock and divisor (set to 0 to avoid warnings)
switch (speed)
{
// normal bus clock
#ifndef ADC_TEENSY_4
case ADC_CONVERSION_SPEED::VERY_LOW_SPEED:
atomic::clearBitFlag(adc_regs.CFG2, ADC_CFG2_ADHSC);
atomic::setBitFlag(adc_regs.CFG1, ADC_CFG1_ADLPC);
// ADC_CFG1_speed = ADC_CFG1_VERY_LOW_SPEED;
ADC_CFG1_speed = get_CFG_VERY_LOW_SPEED(ADC_F_BUS);
break;
#endif
case ADC_CONVERSION_SPEED::LOW_SPEED:
#ifdef ADC_TEENSY_4
atomic::clearBitFlag(adc_regs.CFG, ADC_CFG_ADHSC);
atomic::setBitFlag(adc_regs.CFG, ADC_CFG_ADLPC);
#else
atomic::clearBitFlag(adc_regs.CFG2, ADC_CFG2_ADHSC);
atomic::setBitFlag(adc_regs.CFG1, ADC_CFG1_ADLPC);
#endif
// ADC_CFG1_speed = ADC_CFG1_LOW_SPEED;
ADC_CFG1_speed = get_CFG_LOW_SPEED(ADC_F_BUS);
break;
case ADC_CONVERSION_SPEED::MED_SPEED:
#ifdef ADC_TEENSY_4
atomic::clearBitFlag(adc_regs.CFG, ADC_CFG_ADHSC);
atomic::clearBitFlag(adc_regs.CFG, ADC_CFG_ADLPC);
#else
atomic::clearBitFlag(adc_regs.CFG2, ADC_CFG2_ADHSC);
atomic::clearBitFlag(adc_regs.CFG1, ADC_CFG1_ADLPC);
#endif
ADC_CFG1_speed = get_CFG_MEDIUM_SPEED(ADC_F_BUS);
break;
#ifndef ADC_TEENSY_4
case ADC_CONVERSION_SPEED::HIGH_SPEED_16BITS:
atomic::setBitFlag(adc_regs.CFG2, ADC_CFG2_ADHSC);
atomic::clearBitFlag(adc_regs.CFG1, ADC_CFG1_ADLPC);
// ADC_CFG1_speed = ADC_CFG1_HI_SPEED_16_BITS;
ADC_CFG1_speed = get_CFG_HI_SPEED_16_BITS(ADC_F_BUS);
break;
#endif
case ADC_CONVERSION_SPEED::HIGH_SPEED:
#ifdef ADC_TEENSY_4
atomic::setBitFlag(adc_regs.CFG, ADC_CFG_ADHSC);
atomic::clearBitFlag(adc_regs.CFG, ADC_CFG_ADLPC);
#else
atomic::setBitFlag(adc_regs.CFG2, ADC_CFG2_ADHSC);
atomic::clearBitFlag(adc_regs.CFG1, ADC_CFG1_ADLPC);
#endif
ADC_CFG1_speed = get_CFG_HIGH_SPEED(ADC_F_BUS);
break;
#ifndef ADC_TEENSY_4
case ADC_CONVERSION_SPEED::VERY_HIGH_SPEED:
atomic::setBitFlag(adc_regs.CFG2, ADC_CFG2_ADHSC);
atomic::clearBitFlag(adc_regs.CFG1, ADC_CFG1_ADLPC);
// ADC_CFG1_speed = ADC_CFG1_VERY_HIGH_SPEED;
ADC_CFG1_speed = get_CFG_VERY_HIGH_SPEED(ADC_F_BUS);
break;
#endif
// adack - async clock source, independent of the bus clock
#ifdef ADC_TEENSY_4 // fADK = 10 or 20 MHz
case ADC_CONVERSION_SPEED::ADACK_10:
atomic::clearBitFlag(adc_regs.CFG, ADC_CFG_ADHSC);
is_adack = true;
break;
case ADC_CONVERSION_SPEED::ADACK_20:
atomic::setBitFlag(adc_regs.CFG, ADC_CFG_ADHSC);
is_adack = true;
break;
#else // fADK = 2.4, 4.0, 5.2 or 6.2 MHz
case ADC_CONVERSION_SPEED::ADACK_2_4:
atomic::clearBitFlag(adc_regs.CFG2, ADC_CFG2_ADHSC);
atomic::setBitFlag(adc_regs.CFG1, ADC_CFG1_ADLPC);
is_adack = true;
break;
case ADC_CONVERSION_SPEED::ADACK_4_0:
atomic::setBitFlag(adc_regs.CFG2, ADC_CFG2_ADHSC);
atomic::setBitFlag(adc_regs.CFG1, ADC_CFG1_ADLPC);
is_adack = true;
break;
case ADC_CONVERSION_SPEED::ADACK_5_2:
atomic::clearBitFlag(adc_regs.CFG2, ADC_CFG2_ADHSC);
atomic::clearBitFlag(adc_regs.CFG1, ADC_CFG1_ADLPC);
is_adack = true;
break;
case ADC_CONVERSION_SPEED::ADACK_6_2:
atomic::setBitFlag(adc_regs.CFG2, ADC_CFG2_ADHSC);
atomic::clearBitFlag(adc_regs.CFG1, ADC_CFG1_ADLPC);
is_adack = true;
break;
#endif
default:
fail_flag |= ADC_ERROR::OTHER;
return;
}
if (is_adack)
{
// async clock source, independent of the bus clock
#ifdef ADC_TEENSY_4
atomic::setBitFlag(adc_regs.GC, ADC_GC_ADACKEN); // enable ADACK (takes max 5us to be ready)
atomic::setBitFlag(adc_regs.CFG, ADC_CFG_ADICLK(3)); // select ADACK as clock source
atomic::clearBitFlag(adc_regs.CFG, ADC_CFG_ADIV(3)); // select no dividers
#else
atomic::setBitFlag(adc_regs.CFG2, ADC_CFG2_ADACKEN);
atomic::setBitFlag(adc_regs.CFG1, ADC_CFG1_ADICLK(3));
atomic::clearBitFlag(adc_regs.CFG1, ADC_CFG1_ADIV(3));
#endif
}
else
{
// normal bus clock used - disable the internal asynchronous clock
// total speed can be: bus, bus/2, bus/4, bus/8 or bus/16.
#ifdef ADC_TEENSY_4
atomic::clearBitFlag(adc_regs.GC, ADC_GC_ADACKEN); // disable async
atomic::changeBitFlag(adc_regs.CFG, ADC_CFG_ADICLK(3), ADC_CFG1_speed & ADC_CFG_ADICLK(3)); // bus or bus/2
atomic::changeBitFlag(adc_regs.CFG, ADC_CFG_ADIV(3), ADC_CFG1_speed & ADC_CFG_ADIV(3)); // divisor for the clock source
#else
atomic::clearBitFlag(adc_regs.CFG2, ADC_CFG2_ADACKEN);
atomic::changeBitFlag(adc_regs.CFG1, ADC_CFG1_ADICLK(3), ADC_CFG1_speed & ADC_CFG1_ADICLK(3));
atomic::changeBitFlag(adc_regs.CFG1, ADC_CFG1_ADIV(3), ADC_CFG1_speed & ADC_CFG1_ADIV(3));
#endif
}
conversion_speed = speed;
calibrate();
}
// Sets the sampling speed
/* Increase the sampling speed for low impedance sources, decrease it for higher impedance ones.
* \param speed can be any of the ADC_SAMPLING_SPEED enum: VERY_LOW_SPEED, LOW_SPEED, MED_SPEED, HIGH_SPEED or VERY_HIGH_SPEED.
*
* VERY_LOW_SPEED is the lowest possible sampling speed (+24 ADCK).
* LOW_SPEED adds +16 ADCK.
* MED_SPEED adds +10 ADCK.
* HIGH_SPEED adds +6 ADCK.
* VERY_HIGH_SPEED is the highest possible sampling speed (0 ADCK added).
*/
void ADC_Module::setSamplingSpeed(ADC_SAMPLING_SPEED speed)
{
if (calibrating)
wait_for_cal();
switch (speed)
{
#ifdef ADC_TEENSY_4
case ADC_SAMPLING_SPEED::VERY_LOW_SPEED:
atomic::setBitFlag(adc_regs.CFG, ADC_CFG_ADLSMP); // long sampling time enable
atomic::changeBitFlag(adc_regs.CFG, ADC_CFG_ADSTS(3), ADC_CFG_ADSTS(3));
break;
case ADC_SAMPLING_SPEED::LOW_SPEED:
atomic::setBitFlag(adc_regs.CFG, ADC_CFG_ADLSMP); // long sampling time enable
atomic::changeBitFlag(adc_regs.CFG, ADC_CFG_ADSTS(3), ADC_CFG_ADSTS(2));
break;
case ADC_SAMPLING_SPEED::LOW_MED_SPEED:
atomic::setBitFlag(adc_regs.CFG, ADC_CFG_ADLSMP); // long sampling time enable
atomic::changeBitFlag(adc_regs.CFG, ADC_CFG_ADSTS(3), ADC_CFG_ADSTS(1));
break;
case ADC_SAMPLING_SPEED::MED_SPEED:
atomic::setBitFlag(adc_regs.CFG, ADC_CFG_ADLSMP); // long sampling time enable
atomic::changeBitFlag(adc_regs.CFG, ADC_CFG_ADSTS(3), ADC_CFG_ADSTS(0));
break;
case ADC_SAMPLING_SPEED::MED_HIGH_SPEED:
atomic::clearBitFlag(adc_regs.CFG, ADC_CFG_ADLSMP); // long sampling time disabled
atomic::changeBitFlag(adc_regs.CFG, ADC_CFG_ADSTS(3), ADC_CFG_ADSTS(3));
break;
case ADC_SAMPLING_SPEED::HIGH_SPEED:
atomic::clearBitFlag(adc_regs.CFG, ADC_CFG_ADLSMP); // long sampling time disabled
atomic::changeBitFlag(adc_regs.CFG, ADC_CFG_ADSTS(3), ADC_CFG_ADSTS(2));
break;
case ADC_SAMPLING_SPEED::HIGH_VERY_HIGH_SPEED:
atomic::clearBitFlag(adc_regs.CFG, ADC_CFG_ADLSMP); // long sampling time disabled
atomic::changeBitFlag(adc_regs.CFG, ADC_CFG_ADSTS(3), ADC_CFG_ADSTS(1));
break;
case ADC_SAMPLING_SPEED::VERY_HIGH_SPEED:
atomic::clearBitFlag(adc_regs.CFG, ADC_CFG_ADLSMP); // long sampling time disabled
atomic::changeBitFlag(adc_regs.CFG, ADC_CFG_ADSTS(3), ADC_CFG_ADSTS(0));
break;
#else
case ADC_SAMPLING_SPEED::VERY_LOW_SPEED:
atomic::setBitFlag(adc_regs.CFG1, ADC_CFG1_ADLSMP); // long sampling time enable
atomic::clearBitFlag(adc_regs.CFG2, ADC_CFG2_ADLSTS(3)); // maximum sampling time (+24 ADCK)
break;
case ADC_SAMPLING_SPEED::LOW_SPEED:
atomic::setBitFlag(adc_regs.CFG1, ADC_CFG1_ADLSMP); // long sampling time enable
atomic::changeBitFlag(adc_regs.CFG2, ADC_CFG2_ADLSTS(3), ADC_CFG2_ADLSTS(1)); // high sampling time (+16 ADCK)
break;
case ADC_SAMPLING_SPEED::MED_SPEED:
atomic::setBitFlag(adc_regs.CFG1, ADC_CFG1_ADLSMP); // long sampling time enable
atomic::changeBitFlag(adc_regs.CFG2, ADC_CFG2_ADLSTS(3), ADC_CFG2_ADLSTS(2)); // medium sampling time (+10 ADCK)
break;
case ADC_SAMPLING_SPEED::HIGH_SPEED:
atomic::setBitFlag(adc_regs.CFG1, ADC_CFG1_ADLSMP); // long sampling time enable
atomic::setBitFlag(adc_regs.CFG2, ADC_CFG2_ADLSTS(3)); // low sampling time (+6 ADCK)
break;
case ADC_SAMPLING_SPEED::VERY_HIGH_SPEED:
atomic::clearBitFlag(adc_regs.CFG1, ADC_CFG1_ADLSMP); // shortest sampling time
break;
#endif
}
sampling_speed = speed;
}
/* Set the number of averages: 0, 4, 8, 16 or 32.
*
*/
void ADC_Module::setAveraging(uint8_t num)
{
if (calibrating)
wait_for_cal();
if (num <= 1)
{
num = 0;
// ADC_SC3_avge = 0;
#ifdef ADC_TEENSY_4
atomic::clearBitFlag(adc_regs.GC, ADC_GC_AVGE);
#else
atomic::clearBitFlag(adc_regs.SC3, ADC_SC3_AVGE);
#endif
}
else
{
// ADC_SC3_avge = 1;
#ifdef ADC_TEENSY_4
atomic::setBitFlag(adc_regs.GC, ADC_GC_AVGE);
#else
atomic::setBitFlag(adc_regs.SC3, ADC_SC3_AVGE);
#endif
if (num <= 4)
{
num = 4;
// ADC_SC3_avgs0 = 0;
// ADC_SC3_avgs1 = 0;
#ifdef ADC_TEENSY_4
atomic::clearBitFlag(adc_regs.CFG, ADC_CFG_AVGS(3));
#else
atomic::clearBitFlag(adc_regs.SC3, ADC_SC3_AVGS(3));
#endif
}
else if (num <= 8)
{
num = 8;
// ADC_SC3_avgs0 = 1;
// ADC_SC3_avgs1 = 0;
#ifdef ADC_TEENSY_4
atomic::changeBitFlag(adc_regs.CFG, ADC_CFG_AVGS(3), ADC_CFG_AVGS(1));
#else
atomic::changeBitFlag(adc_regs.SC3, ADC_SC3_AVGS(3), ADC_SC3_AVGS(1));
#endif
}
else if (num <= 16)
{
num = 16;
// ADC_SC3_avgs0 = 0;
// ADC_SC3_avgs1 = 1;
#ifdef ADC_TEENSY_4
atomic::changeBitFlag(adc_regs.CFG, ADC_CFG_AVGS(3), ADC_CFG_AVGS(2));
#else
atomic::changeBitFlag(adc_regs.SC3, ADC_SC3_AVGS(3), ADC_SC3_AVGS(2));
#endif
}
else
{
num = 32;
// ADC_SC3_avgs0 = 1;
// ADC_SC3_avgs1 = 1;
#ifdef ADC_TEENSY_4
atomic::setBitFlag(adc_regs.CFG, ADC_CFG_AVGS(3));
#else
atomic::setBitFlag(adc_regs.SC3, ADC_SC3_AVGS(3));
#endif
}
}
analog_num_average = num;
}
/* Enable interrupts: An ADC Interrupt will be raised when the conversion is completed
* (including hardware averages and if the comparison (if any) is true).
*/
void ADC_Module::enableInterrupts(void (*isr)(void), uint8_t priority)
{
if (calibrating)
wait_for_cal();
// ADC_SC1A_aien = 1;
#ifdef ADC_TEENSY_4
atomic::setBitFlag(adc_regs.HC0, ADC_HC_AIEN);
interrupts_enabled = true;
#else
atomic::setBitFlag(adc_regs.SC1A, ADC_SC1_AIEN);
#endif
attachInterruptVector(IRQ_ADC, isr);
NVIC_SET_PRIORITY(IRQ_ADC, priority);
NVIC_ENABLE_IRQ(IRQ_ADC);
}
/* Disable interrupts
*
*/
void ADC_Module::disableInterrupts()
{
// ADC_SC1A_aien = 0;
#ifdef ADC_TEENSY_4
atomic::clearBitFlag(adc_regs.HC0, ADC_HC_AIEN);
interrupts_enabled = false;
#else
atomic::clearBitFlag(adc_regs.SC1A, ADC_SC1_AIEN);
#endif
NVIC_DISABLE_IRQ(IRQ_ADC);
}
#ifdef ADC_USE_DMA
/* Enable DMA request: An ADC DMA request will be raised when the conversion is completed
* (including hardware averages and if the comparison (if any) is true).
*/
void ADC_Module::enableDMA()
{
if (calibrating)
wait_for_cal();
// ADC_SC2_dma = 1;
#ifdef ADC_TEENSY_4
atomic::setBitFlag(adc_regs.GC, ADC_GC_DMAEN);
#else
atomic::setBitFlag(adc_regs.SC2, ADC_SC2_DMAEN);
#endif
}
/* Disable ADC DMA request
*
*/
void ADC_Module::disableDMA()
{
// ADC_SC2_dma = 0;
#ifdef ADC_TEENSY_4
atomic::clearBitFlag(adc_regs.GC, ADC_GC_DMAEN);
#else
atomic::clearBitFlag(adc_regs.SC2, ADC_SC2_DMAEN);
#endif
}
#endif
/* Enable the compare function: A conversion will be completed only when the ADC value
* is >= compValue (greaterThan=1) or < compValue (greaterThan=0)
* Call it after changing the resolution
* Use with interrupts or poll conversion completion with isADC_Complete()
*/
void ADC_Module::enableCompare(int16_t compValue, bool greaterThan)
{
if (calibrating)
wait_for_cal(); // if we modify the adc's registers when calibrating, it will fail
// ADC_SC2_cfe = 1; // enable compare
// ADC_SC2_cfgt = (int32_t)greaterThan; // greater or less than?
#ifdef ADC_TEENSY_4
atomic::setBitFlag(adc_regs.GC, ADC_GC_ACFE);
atomic::changeBitFlag(adc_regs.GC, ADC_GC_ACFGT, ADC_GC_ACFGT * greaterThan);
adc_regs.CV = ADC_CV_CV1(compValue);
#else
atomic::setBitFlag(adc_regs.SC2, ADC_SC2_ACFE);
atomic::changeBitFlag(adc_regs.SC2, ADC_SC2_ACFGT, ADC_SC2_ACFGT * greaterThan);
adc_regs.CV1 = (int16_t)compValue; // comp value
#endif
}
/* Enable the compare function: A conversion will be completed only when the ADC value
* is inside (insideRange=1) or outside (=0) the range given by (lowerLimit, upperLimit),
* including (inclusive=1) the limits or not (inclusive=0).
* See Table 31-78, p. 617 of the freescale manual.
* Call it after changing the resolution
*/
void ADC_Module::enableCompareRange(int16_t lowerLimit, int16_t upperLimit, bool insideRange, bool inclusive)
{
if (calibrating)
wait_for_cal(); // if we modify the adc's registers when calibrating, it will fail
// ADC_SC2_cfe = 1; // enable compare
// ADC_SC2_cren = 1; // enable compare range
#ifdef ADC_TEENSY_4
atomic::setBitFlag(adc_regs.GC, ADC_GC_ACFE);
atomic::setBitFlag(adc_regs.GC, ADC_GC_ACREN);
#else
atomic::setBitFlag(adc_regs.SC2, ADC_SC2_ACFE);
atomic::setBitFlag(adc_regs.SC2, ADC_SC2_ACREN);
#endif
if (insideRange && inclusive)
{ // True if value is inside the range, including the limits. CV1 <= CV2 and ACFGT=1
// ADC_SC2_cfgt = 1;
#ifdef ADC_TEENSY_4
atomic::setBitFlag(adc_regs.GC, ADC_GC_ACFGT);
adc_regs.CV = ADC_CV_CV1(lowerLimit) | ADC_CV_CV2(upperLimit);
#else
atomic::setBitFlag(adc_regs.SC2, ADC_SC2_ACFGT);
adc_regs.CV1 = (int16_t)lowerLimit;
adc_regs.CV2 = (int16_t)upperLimit;
#endif
}
else if (insideRange && !inclusive)
{ // True if value is inside the range, excluding the limits. CV1 > CV2 and ACFGT=0
// ADC_SC2_cfgt = 0;
#ifdef ADC_TEENSY_4
atomic::clearBitFlag(adc_regs.GC, ADC_GC_ACFGT);
adc_regs.CV = ADC_CV_CV2(lowerLimit) | ADC_CV_CV1(upperLimit);
#else
atomic::clearBitFlag(adc_regs.SC2, ADC_SC2_ACFGT);
adc_regs.CV2 = (int16_t)lowerLimit;
adc_regs.CV1 = (int16_t)upperLimit;
#endif
}
else if (!insideRange && inclusive)
{ // True if value is outside of range or is equal to either limit. CV1 > CV2 and ACFGT=1
// ADC_SC2_cfgt = 1;
#ifdef ADC_TEENSY_4
atomic::setBitFlag(adc_regs.GC, ADC_GC_ACFGT);
adc_regs.CV = ADC_CV_CV2(lowerLimit) | ADC_CV_CV1(upperLimit);
#else
atomic::setBitFlag(adc_regs.SC2, ADC_SC2_ACFGT);
adc_regs.CV2 = (int16_t)lowerLimit;
adc_regs.CV1 = (int16_t)upperLimit;
#endif
}
else if (!insideRange && !inclusive)
{ // True if value is outside of range and not equal to either limit. CV1 > CV2 and ACFGT=0
// ADC_SC2_cfgt = 0;
#ifdef ADC_TEENSY_4
atomic::clearBitFlag(adc_regs.GC, ADC_GC_ACFGT);
adc_regs.CV = ADC_CV_CV1(lowerLimit) | ADC_CV_CV2(upperLimit);
#else
atomic::clearBitFlag(adc_regs.SC2, ADC_SC2_ACFGT);
adc_regs.CV1 = (int16_t)lowerLimit;
adc_regs.CV2 = (int16_t)upperLimit;
#endif
}
}
/* Disable the compare function
*
*/
void ADC_Module::disableCompare()
{
// ADC_SC2_cfe = 0;
#ifdef ADC_TEENSY_4
atomic::clearBitFlag(adc_regs.GC, ADC_GC_ACFE);
#else
atomic::clearBitFlag(adc_regs.SC2, ADC_SC2_ACFE);
#endif
}
#ifdef ADC_USE_PGA
/* Enables the PGA and sets the gain
* Use only for signals lower than 1.2 V
* \param gain can be 1, 2, 4, 8, 16 32 or 64
*
*/
void ADC_Module::enablePGA(uint8_t gain)
{
if (calibrating)
wait_for_cal();
uint8_t setting;
if (gain <= 1)
{
setting = 0;
}
else if (gain <= 2)
{
setting = 1;
}
else if (gain <= 4)
{
setting = 2;
}
else if (gain <= 8)
{
setting = 3;
}
else if (gain <= 16)
{
setting = 4;
}
else if (gain <= 32)
{
setting = 5;
}
else
{ // 64
setting = 6;
}
adc_regs.PGA = ADC_PGA_PGAEN | ADC_PGA_PGAG(setting);
pga_value = 1 << setting;
}
/* Returns the PGA level
* PGA level = from 0 to 64
*/
uint8_t ADC_Module::getPGA()
{
return pga_value;
}
//! Disable PGA
void ADC_Module::disablePGA()
{
// ADC_PGA_pgaen = 0;
atomic::clearBitFlag(adc_regs.PGA, ADC_PGA_PGAEN);
pga_value = 1;
}
#endif
//////////////// INFORMATION ABOUT VALID PINS //////////////////
// check whether the pin is a valid analog pin
bool ADC_Module::checkPin(uint8_t pin)
{
if (pin > ADC_MAX_PIN)
{
return false; // all others are invalid
}
// translate pin number to SC1A number, that also contains MUX a or b info.
const uint8_t sc1a_pin = channel2sc1a[pin];
// check for valid pin
if ((sc1a_pin & ADC_SC1A_CHANNELS) == ADC_SC1A_PIN_INVALID)
{
return false; // all others are invalid
}
return true;
}
#if ADC_DIFF_PAIRS > 0
// check whether the pins are a valid analog differential pins (including PGA if enabled)
bool ADC_Module::checkDifferentialPins(uint8_t pinP, uint8_t pinN)
{
if (pinP > ADC_MAX_PIN)
{
return false; // all others are invalid
}
// translate pinP number to SC1A number, to make sure it's differential
uint8_t sc1a_pin = channel2sc1a[pinP];