-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch.py
228 lines (174 loc) · 6.1 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# search.py
# ---------
# Licensing Information: Please do not distribute or publish solutions to this
# project. You are free to use and extend these projects for educational
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
# John DeNero ([email protected]) and Dan Klein ([email protected]).
# For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html
"""
In search.py, you will implement generic search algorithms which are called
by Pacman agents (in searchAgents.py).
"""
import util
class SearchProblem:
"""
This class outlines the structure of a search problem, but doesn't implement
any of the methods (in object-oriented terminology: an abstract class).
You do not need to change anything in this class, ever.
"""
def getStartState(self):
"""
Returns the start state for the search problem
"""
util.raiseNotDefined()
def isGoalState(self, state):
"""
state: Search state
Returns True if and only if the state is a valid goal state
"""
util.raiseNotDefined()
def getSuccessors(self, state):
"""
state: Search state
For a given state, this should return a list of triples,
(successor, action, stepCost), where 'successor' is a
successor to the current state, 'action' is the action
required to get there, and 'stepCost' is the incremental
cost of expanding to that successor
"""
util.raiseNotDefined()
def getCostOfActions(self, actions):
"""
actions: A list of actions to take
This method returns the total cost of a particular sequence of actions. The sequence must
be composed of legal moves
"""
util.raiseNotDefined()
def nullHeuristic(state, problem=None):
"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
return 0
def tinyMazeSearch(problem):
"""
Returns a sequence of moves that solves tinyMaze. For any other
maze, the sequence of moves will be incorrect, so only use this for tinyMaze
"""
from game import Directions
s = Directions.SOUTH
w = Directions.WEST
return [s,s,w,s,w,w,s,w]
def depthFirstSearch(problem):
return bdFirstSearch(problem,BDFS(dfs,None,None))
def breadthFirstSearch(problem):
return bdFirstSearch(problem,BDFS(bfs,None,None))
def uniformCostSearch(problem):
return bdFirstSearch(problem,BDFS(ucs,None,None))
def aStarSearch(problem, heuristic=nullHeuristic):
return bdFirstSearch(problem,BDFS(astar, heuristic,problem))
DISTANCE_FROM_GOAL="distanceFromGoal"
def calculateH(problem,state,method):
if (method==DISTANCE_FROM_GOAL):
goalX=problem.goal[0]
goalY=problem.goal[1]
currX=state.state[0]
currY=state.state[1]
return abs(goalX-currX)+abs(goalY-currY)
def bdFirstSearch(problem,searchAlg):
startState=problem.getStartState()
searchAlg.SetCurrent(Node(startState,None,None,0))
searchAlg.PushAndMarkExplored(searchAlg.GetCurrent(),None)
while (searchAlg.NotEmpty()):
current = searchAlg.Pop()
if problem.isGoalState(current.getState()):
return current.getActionsFromStart()
else:
successors = problem.getSuccessors(current.state)
for successor in successors:
position, direction, cost = successor
if searchAlg.NotVisited(position):
searchAlg.PushAndMarkExplored(Node(position,current,direction,cost),cost)
# Abbreviations
bfs = breadthFirstSearch
dfs = depthFirstSearch
astar = aStarSearch
ucs = uniformCostSearch
class Node:
def __init__(self, state, parent, action,cost):
self.state = state
self.parent = parent
self.action = action
self.cost = cost
if self.parent!=None:
self.totalCost = self.cost + self.parent.totalCost
else:
self.totalCost=cost
def __str__(self):
return "State: " + str(self.state) + "\n" + \
"Parent: " + str(self.parent.state) + "\n" + \
"Cost: " + str(self.cost)+ "\n" + \
"Action: " + str(self.action) + "\n"
def getState(self):
return self.state
def getParent(self):
return self.parent
def getCost(self):
return self.cost
def getAction(self):
return self.action
def getActionsFromStart(self):
actionList = []
currNode = self
while currNode.getAction() is not None:
actionList.append(currNode.getAction())
currNode = currNode.parent
actionList.reverse()
print len(actionList)
return actionList
class BDFS:
'BDFS containg the entire data structure needed to perform best/deep first search'
def __init__(self,dsName,heuristic,problem):
self.dsName=dsName
self.heuristic=heuristic
self.problem=problem
if (self.dsName==dfs):
self.frontier=util.Stack()
elif (self.dsName==bfs):
self.frontier=util.Queue()
elif (self.dsName==ucs):
self.frontier=util.PriorityQueue()
elif (self.dsName==astar):
self.frontier=util.PriorityQueueWithFunction(lambda func:heuristic(self.GetCurrent().state,self.problem)+self.GetCurrent().totalCost)
heuristic=None
frontier=None
dsName=None
explored = set()
current = None
problem=None
def NotEmpty(self):
return not self.frontier.isEmpty()
def PushAndMarkExplored(self,item,priority):
if (self.dsName==dfs or self.dsName==bfs):
self.frontier.push(item)
elif self.dsName==astar:
self.frontier.push(item)
else:
self.frontier.push(item,priority)
self.explored.add(item.getState())
def NotVisited(self,item):
return not item in self.explored
def SetCurrent(self,item):
self.current=item
def SetPosition(self,item):
self.position=item
def GetCurrent(self):
if self.current==None:
self.current= self.problem.getStartState()
return self.current
def GetSearchType(self):
return self.dsName
def Pop(self):
state = self.frontier.pop()
self.SetCurrent(state)
return state