forked from Lightning-AI/litgpt
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconvert_lit_checkpoint.py
271 lines (245 loc) · 11.9 KB
/
convert_lit_checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
import gc
from functools import partial
from pathlib import Path
from typing import Dict, Optional, Tuple, Union
import torch
from lightning.fabric.utilities.load import _NotYetLoadedTensor as NotYetLoadedTensor
from litgpt import Config
from litgpt.scripts.convert_hf_checkpoint import layer_template, load_param
from litgpt.utils import CLI, incremental_save, lazy_load
def copy_weights_falcon(
model_name: str,
state_dict: Dict[str, torch.Tensor],
lit_weights: Dict[str, Union[torch.Tensor, NotYetLoadedTensor]],
saver: Optional[incremental_save] = None,
) -> None:
weight_map = {
"transformer.wte.weight": "transformer.word_embeddings.weight",
"transformer.h.{}.attn.attn.weight": "transformer.h.{}.self_attention.query_key_value.weight",
"transformer.h.{}.attn.proj.weight": "transformer.h.{}.self_attention.dense.weight",
"transformer.h.{}.mlp.fc.weight": "transformer.h.{}.mlp.dense_h_to_4h.weight",
"transformer.h.{}.mlp.proj.weight": "transformer.h.{}.mlp.dense_4h_to_h.weight",
"transformer.ln_f.bias": "transformer.ln_f.bias",
"transformer.ln_f.weight": "transformer.ln_f.weight",
"lm_head.weight": "lm_head.weight",
}
# the original model definition is different for each size
if "7b" in model_name:
weight_map.update(
{
"transformer.h.{}.norm_1.bias": "transformer.h.{}.input_layernorm.bias",
"transformer.h.{}.norm_1.weight": "transformer.h.{}.input_layernorm.weight",
}
)
elif "40b" in model_name or "180B" in model_name:
weight_map.update(
{
"transformer.h.{}.norm_1.bias": "transformer.h.{}.ln_attn.bias",
"transformer.h.{}.norm_1.weight": "transformer.h.{}.ln_attn.weight",
"transformer.h.{}.norm_2.bias": "transformer.h.{}.ln_mlp.bias",
"transformer.h.{}.norm_2.weight": "transformer.h.{}.ln_mlp.weight",
}
)
else:
raise NotImplementedError
for name, param in lit_weights.items():
if "transformer.h" in name:
from_name, number = layer_template(name, 2)
to_name = weight_map[from_name].format(number)
else:
to_name = weight_map[name]
param = load_param(param, name, None)
if saver is not None:
param = saver.store_early(param)
state_dict[to_name] = param
def copy_weights_gpt_neox(
state_dict: Dict[str, torch.Tensor],
lit_weights: Dict[str, Union[torch.Tensor, NotYetLoadedTensor]],
saver: Optional[incremental_save] = None,
) -> None:
weight_map = {
"transformer.wte.weight": "gpt_neox.embed_in.weight",
"transformer.h.{}.norm_1.bias": "gpt_neox.layers.{}.input_layernorm.bias",
"transformer.h.{}.norm_1.weight": "gpt_neox.layers.{}.input_layernorm.weight",
"transformer.h.{}.attn.attn.bias": "gpt_neox.layers.{}.attention.query_key_value.bias",
"transformer.h.{}.attn.attn.weight": "gpt_neox.layers.{}.attention.query_key_value.weight",
"transformer.h.{}.attn.proj.bias": "gpt_neox.layers.{}.attention.dense.bias",
"transformer.h.{}.attn.proj.weight": "gpt_neox.layers.{}.attention.dense.weight",
"transformer.h.{}.norm_2.bias": "gpt_neox.layers.{}.post_attention_layernorm.bias",
"transformer.h.{}.norm_2.weight": "gpt_neox.layers.{}.post_attention_layernorm.weight",
"transformer.h.{}.mlp.fc.bias": "gpt_neox.layers.{}.mlp.dense_h_to_4h.bias",
"transformer.h.{}.mlp.fc.weight": "gpt_neox.layers.{}.mlp.dense_h_to_4h.weight",
"transformer.h.{}.mlp.proj.bias": "gpt_neox.layers.{}.mlp.dense_4h_to_h.bias",
"transformer.h.{}.mlp.proj.weight": "gpt_neox.layers.{}.mlp.dense_4h_to_h.weight",
"transformer.ln_f.bias": "gpt_neox.final_layer_norm.bias",
"transformer.ln_f.weight": "gpt_neox.final_layer_norm.weight",
"lm_head.weight": "embed_out.weight",
}
for name, param in lit_weights.items():
if "transformer.h" in name:
from_name, number = layer_template(name, 2)
to_name = weight_map[from_name].format(number)
else:
to_name = weight_map[name]
param = load_param(param, name, None)
if saver is not None:
param = saver.store_early(param)
state_dict[to_name] = param
def copy_weights_llama(
config: Config,
state_dict: Dict[str, torch.Tensor],
lit_weights: Dict[str, Union[torch.Tensor, NotYetLoadedTensor]],
untie_weights: bool = False,
saver: Optional[incremental_save] = None,
) -> None:
weight_map = {
"transformer.wte.weight": "model.embed_tokens.weight",
"transformer.h.{}.norm_1.weight": "model.layers.{l}.input_layernorm.weight",
"transformer.h.{}.norm_1.bias": "model.layers.{l}.input_layernorm.bias",
"transformer.h.{}.attn.proj.weight": "model.layers.{l}.self_attn.o_proj.weight",
"transformer.h.{}.norm_2.weight": "model.layers.{l}.post_attention_layernorm.weight",
"transformer.h.{}.norm_2.bias": "model.layers.{l}.post_attention_layernorm.bias",
"transformer.ln_f.weight": "model.norm.weight",
"transformer.ln_f.bias": "model.norm.bias",
"lm_head.weight": "lm_head.weight",
}
if config.mlp_class_name == "LLaMAMoE":
weight_map.update(
{
"transformer.h.{}.mlp.gate.weight": "model.layers.{l}.block_sparse_moe.gate.weight",
"transformer.h.{}.mlp.experts.{}.fc_1.weight": "model.layers.{l}.block_sparse_moe.experts.{e}.w1.weight",
"transformer.h.{}.mlp.experts.{}.fc_2.weight": "model.layers.{l}.block_sparse_moe.experts.{e}.w3.weight",
"transformer.h.{}.mlp.experts.{}.proj.weight": "model.layers.{l}.block_sparse_moe.experts.{e}.w2.weight",
}
)
elif config.mlp_class_name in ("LLaMAMLP", "GemmaMLP"):
weight_map.update(
{
"transformer.h.{}.mlp.fc_1.weight": "model.layers.{l}.mlp.gate_proj.weight",
"transformer.h.{}.mlp.fc_2.weight": "model.layers.{l}.mlp.up_proj.weight",
"transformer.h.{}.mlp.proj.weight": "model.layers.{l}.mlp.down_proj.weight",
}
)
else:
raise NotImplementedError
for name, param in lit_weights.items():
if name == "lm_head.weight" and untie_weights:
continue
if name.endswith(".attn.attn.weight"):
from_name, l = layer_template(name, 2)
q = "model.layers.{}.self_attn.q_proj.weight".format(l)
k = "model.layers.{}.self_attn.k_proj.weight".format(l)
v = "model.layers.{}.self_attn.v_proj.weight".format(l)
qkv = load_param(param, name, None)
qp, kp, vp = qkv_split(qkv, config)
for to_name, param in zip((q, k, v), (qp, kp, vp)):
if saver is not None:
param = saver.store_early(param)
state_dict[to_name] = param
else:
if "transformer.h" in name:
from_name, l = layer_template(name, 2)
e = None
if "mlp.experts" in name:
from_name, e = layer_template(from_name, 5)
to_name = weight_map[from_name]
to_name = to_name.format(l=l, e=e)
else:
to_name = weight_map[name]
param = load_param(param, name, None)
if saver is not None:
param = saver.store_early(param)
state_dict[to_name] = param
def copy_weights_phi(
config: Config,
state_dict: Dict[str, torch.Tensor],
lit_weights: Dict[str, Union[torch.Tensor, NotYetLoadedTensor]],
saver: Optional[incremental_save] = None,
) -> None:
weight_map = {
"transformer.wte.weight": "model.embed_tokens.weight",
"transformer.h.{}.norm_1.weight": "model.layers.{}.input_layernorm.weight",
"transformer.h.{}.norm_1.bias": "model.layers.{}.input_layernorm.bias",
"transformer.h.{}.attn.proj.weight": "model.layers.{}.self_attn.dense.weight",
"transformer.h.{}.attn.proj.bias": "model.layers.{}.self_attn.dense.bias",
"transformer.h.{}.mlp.fc.weight": "model.layers.{}.mlp.fc1.weight",
"transformer.h.{}.mlp.fc.bias": "model.layers.{}.mlp.fc1.bias",
"transformer.h.{}.mlp.proj.weight": "model.layers.{}.mlp.fc2.weight",
"transformer.h.{}.mlp.proj.bias": "model.layers.{}.mlp.fc2.bias",
"transformer.ln_f.weight": "model.final_layernorm.weight",
"transformer.ln_f.bias": "model.final_layernorm.bias",
"lm_head.weight": "lm_head.weight",
"lm_head.bias": "lm_head.bias",
}
for name, param in lit_weights.items():
if name.endswith((".attn.attn.weight", ".attn.attn.bias")):
from_name, l = layer_template(name, 2)
weight_type = name.split(".")[-1] # weight or bias
q = f"model.layers.{l}.self_attn.q_proj.{weight_type}"
k = f"model.layers.{l}.self_attn.k_proj.{weight_type}"
v = f"model.layers.{l}.self_attn.v_proj.{weight_type}"
qkv = load_param(param, name, None)
qp, kp, vp = qkv_split(qkv, config)
for to_name, param in zip((q, k, v), (qp, kp, vp)):
if saver is not None:
param = saver.store_early(param)
state_dict[to_name] = param
else:
if "transformer.h" in name:
from_name, l = layer_template(name, 2)
to_name = weight_map[from_name]
to_name = to_name.format(l)
else:
to_name = weight_map[name]
param = load_param(param, name, None)
if saver is not None:
param = saver.store_early(param)
state_dict[to_name] = param
def qkv_split(
param: Union[torch.Tensor, NotYetLoadedTensor], config: Config
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
q_per_kv = config.n_head // config.n_query_groups
qs = []
ks = []
vs = []
for chunk in torch.chunk(param, config.n_query_groups):
split = torch.split(chunk, [config.head_size * q_per_kv, config.head_size, config.head_size])
qs.append(split[0])
ks.append(split[1])
vs.append(split[2])
q = torch.cat(qs)
k = torch.cat(ks)
v = torch.cat(vs)
return q, k, v
def check_conversion_supported(lit_weights: Dict[str, torch.Tensor]) -> None:
if any("lora" in wn for wn in lit_weights):
raise ValueError("Checkpoints with LoRA weights cannot be converted. Call `scripts/merge_lora.py` first.")
if any("adapter" in wn or "gating_factor" in wn for wn in lit_weights):
raise NotImplementedError("Converting adapter models is not supported.")
@torch.inference_mode()
def convert_lit_checkpoint(checkpoint_dir: Path, output_dir: Path) -> None:
"""Convert a LitGPT trained checkpoint into a Hugging Face Transformers checkpoint."""
config = Config.from_file(checkpoint_dir / "model_config.yaml")
output_dir.mkdir(parents=True, exist_ok=True)
output_path = output_dir / "model.pth"
if "falcon" in config.name:
copy_fn = partial(copy_weights_falcon, config.name)
elif config.mlp_class_name in ("LLaMAMLP", "GemmaMLP", "LLaMAMoE"):
untie_weights = "Gemma" in config.name
copy_fn = partial(copy_weights_llama, config, untie_weights=untie_weights)
elif "phi" in config.name:
copy_fn = partial(copy_weights_phi, config)
else:
copy_fn = copy_weights_gpt_neox
# initialize a new empty state dict to hold our new weights
sd = {}
with incremental_save(output_path) as saver:
lit_weights = lazy_load(checkpoint_dir / "lit_model.pth")
lit_weights = lit_weights.get("model", lit_weights)
check_conversion_supported(lit_weights)
copy_fn(sd, lit_weights, saver=saver)
gc.collect()
saver.save(sd)
if __name__ == "__main__":
CLI(convert_lit_checkpoint)