Skip to content

Commit de224f6

Browse files
committed
Several Improvements, complexity analysis moved to appendix
1 parent 2d3f1ee commit de224f6

File tree

3 files changed

+40
-34
lines changed

3 files changed

+40
-34
lines changed

appendix_complexityAnalysis.tex

Lines changed: 25 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,25 @@
1+
\subsection{Complexity Analysis: Not Feasible}%
2+
\pdfbookmark[2]{Complexity Analysis: Not Feasible}{complexityNotFeasible}%
3+
%
4+
\begin{frame}[t]%
5+
\frametitle{Algorithm Analysis and Comparison}%
6+
\begin{itemize}%
7+
\item \alert{Which of the algorithms is best (for my problem)?}%
8+
\item<2-> Traditional Approach: Complexity Analysis, Theoretical Bounds of Runtime and Solution Quality%
9+
\item<3-> \alert<-9>{Usually not feasible}\uncover<4->{%
10+
\begin{itemize}%
11+
\item analysis extremely complicated\uncover<5->{ since%
12+
\item<5-> algorithms are usually randomized\uncover<6->{ and%
13+
\item<6-> have many parameters (e.g., crossover rate, population size)\uncover<7->{ and%
14+
\item<7-> \inQuotes{sub-algorithms} (e.g., crossover operator, mutation operator, selection algorithm)%
15+
\item<8-> optimization problems also differ in many aspects%
16+
\item<9-> theoretical results only available for toy problems and extremely simplified algorithms\scitep{WWCTL2016GVLSTIOPSOEAP}.%
17+
\item<10-> \inQuotes{performance} has two dimensions (time, result quality), not one\dots%
18+
}}}%
19+
\end{itemize}%
20+
}%
21+
%
22+
\item<11-> \alert{Experimental analysis and comparison is the only practical alternative.}%
23+
%
24+
\end{itemize}%
25+
\end{frame}%

intro-slides.tex

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -53,6 +53,7 @@ \section{Installation}%
5353
\appendices{\barcodes}%
5454
%
5555
\input{appendix_maxSatExample.tex}%
56+
\input{appendix_complexityAnalysis.tex}%
5657
%
5758
\end{document}%%
5859
\endinput%

part_introduction.tex

Lines changed: 14 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -5,13 +5,16 @@ \section{Introduction}%
55
\frametitle{Quick Overview}%
66
\begin{itemize}%
77
\item Concept of optimization algorithms%
8-
\item<2-> How to benchmark optimization algorithms%
9-
\item<3-> How to evaluate data obtained from benchmarking and how to compare algorithms
10-
\item<4-> The \optimizationBenchmarking\ Framework can do it for you\only<-4>{!}\only<5->{:}%
11-
\item<5-> It provides a graphical user interface in a client/server application for loading, editing, and evaluating experimental results.%
12-
\item<6-> It can run as Docker container under Linux, MacOS, and Windows without needing any additional software (except Docker and a browser).%
8+
\item<2-> How to \alert<4>{benchmark} optimization algorithms%
9+
\item<3-> How to \alert<4>{evaluate data} obtained from benchmarking and how to compare algorithms
10+
\item<4-> \alert<4>{The \optimizationBenchmarking\ Framework can help with this\only<-4>{!}}\uncover<5->{:%
11+
\begin{itemize}%
12+
\item It provides a graphical user interface for loading, adding meta-data (algorithm setup\dots) to, and evaluating experimental results.%
13+
\item<6-> It can run as Docker container under Linux, MacOS, and Windows without needing \emph{any} additional software (except Docker and a browser).%
1314
\item<7-> It produces reports, similar to articles, in \LaTeX\ with figures and building blocks ready for use in your publications%
1415
\end{itemize}%
16+
}%
17+
\end{itemize}%
1518
\end{frame}%
1619
%
1720
%
@@ -55,46 +58,23 @@ \section{Introduction}%
5558
\item<25-> \alert<25>{How can I make a good algorithm better (for my problem)?}%
5659
%
5760
\end{itemize}%
61+
~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\~\\%
5862
%
5963
\locateGraphic{2}{width=0.6\paperwidth}{graphics/problem_examples/tsp/tsp}{0.2}{0.29}%
6064
\locateGraphic{3}{width=0.875\paperwidth}{graphics/problem_examples/bin_packing/bin_packing}{0.0625}{0.495}%
6165
\locateGraphic{4}{width=0.55\paperwidth}{graphics/problem_examples/sat/sat}{0.225}{0.5}%
6266
\locateGraphic{5}{width=0.85\paperwidth}{graphics/problem_examples/qap/qap}{0.075}{0.625}%
63-
\locateGraphic{7-8}{width=0.65\paperwidth}{graphics/exponential_functions/exponential_functions}{0.175}{0.6}%
67+
\locateGraphic{7-8}{width=0.75\paperwidth}{graphics/exponential_functions/exponential_functions}{0.1625}{0.55}%
6468
%
65-
\locateGraphic{9}{width=0.75\paperwidth}{graphics/optimization_concept/optimization_concept_1}{0.125}{0.54}%
66-
\locateGraphic{10}{width=0.75\paperwidth}{graphics/optimization_concept/optimization_concept_2}{0.125}{0.54}%
67-
\locateGraphic{11}{width=0.75\paperwidth}{graphics/optimization_concept/optimization_concept_3}{0.125}{0.54}%
68-
\locateGraphic{12}{width=0.75\paperwidth}{graphics/optimization_concept/optimization_concept}{0.125}{0.54}%
69+
\locateGraphic{9}{width=0.75\paperwidth}{graphics/optimization_concept/optimization_concept_1}{0.125}{0.53}%
70+
\locateGraphic{10}{width=0.75\paperwidth}{graphics/optimization_concept/optimization_concept_2}{0.125}{0.53}%
71+
\locateGraphic{11}{width=0.75\paperwidth}{graphics/optimization_concept/optimization_concept_3}{0.125}{0.53}%
72+
\locateGraphic{12}{width=0.75\paperwidth}{graphics/optimization_concept/optimization_concept}{0.125}{0.53}%
6973
%
7074
\end{frame}%
7175
%
7276
%
7377
\begin{frame}[t]%
74-
\frametitle{Algorithm Analysis and Comparison}%
75-
\begin{itemize}%
76-
\item \alert{Which of the algorithms is best (for my problem)?}%
77-
\item<2-> Traditional Approach: Complexity Analysis, Theoretical Bounds of Runtime and Solution Quality%
78-
\item<3-> \alert<-9>{Usually not feasible}\uncover<4->{%
79-
\begin{itemize}%
80-
\item analysis extremely complicated\uncover<5->{ since%
81-
\item<5-> algorithms are usually randomized\uncover<6->{ and%
82-
\item<6-> have many parameters (e.g., crossover rate, population size)\uncover<7->{ and%
83-
\item<7-> \inQuotes{sub-algorithms} (e.g., crossover operator, mutation operator, selection algorithm)%
84-
\item<8-> optimization problems also differ in many aspects%
85-
\item<9-> theoretical results only available for toy problems and extremely simplified algorithms\scitep{WWCTL2016GVLSTIOPSOEAP}.%
86-
}}}%
87-
\end{itemize}%
88-
}%
89-
%
90-
\item<10-> \alert{Experimental analysis and comparison is the only practical alternative.}%
91-
%
92-
\end{itemize}%
93-
\end{frame}%
94-
%
95-
%
96-
%
97-
\begin{frame}[t]%
9878
\frametitle{Performance and Anytime Algorithms}%
9979
%
10080
\emph{\inQuotes{We use metaheuristic optimization algorithms to give us \alert<3->{good approximate solutions} within \alert<4->{acceptable runtime}.}}%

0 commit comments

Comments
 (0)