-
-
Notifications
You must be signed in to change notification settings - Fork 147
/
Copy pathsimple_flows_and_runs_tutorial.py
49 lines (37 loc) · 1.5 KB
/
simple_flows_and_runs_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
"""
Flows and Runs
==============
A simple tutorial on how to train/run a model and how to upload the results.
"""
# License: BSD 3-Clause
from sklearn import ensemble, neighbors
import openml
############################################################################
# .. warning::
# .. include:: ../../test_server_usage_warning.txt
openml.config.start_using_configuration_for_example()
############################################################################
# Train a machine learning model
# ==============================
# NOTE: We are using dataset "diabetes" from the test server: https://test.openml.org/d/20
dataset = openml.datasets.get_dataset(dataset_id="diabetes", version=1)
X, y, categorical_indicator, attribute_names = dataset.get_data(
target_names=dataset.default_target_attribute
)
clf = neighbors.KNeighborsClassifier(n_neighbors=3)
clf.fit(X, y)
############################################################################
# Running a model on a task
# =========================
task = openml.tasks.get_task(119)
clf = ensemble.RandomForestClassifier()
run = openml.runs.run_model_on_task(clf, task)
print(run)
############################################################################
# Publishing the run
# ==================
myrun = run.publish()
print(f"Run was uploaded to {myrun.openml_url}")
print(f"The flow can be found at {myrun.flow.openml_url}")
############################################################################
openml.config.stop_using_configuration_for_example()