Skip to content

Commit d217bd2

Browse files
committed
add package list
1 parent da59397 commit d217bd2

File tree

2 files changed

+123
-4
lines changed

2 files changed

+123
-4
lines changed

README.md

+98-3
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# python-geospatial
22

3-
A collection of Python packages for geospatial analysis with binder-ready notebook examples.
3+
A collection of Python packages for geospatial analysis with binder-ready notebook examples. Launch the interactive notebook tutorials with mybinder.org or binder.pangeo.io test all the pre-installed Python pakcages for geospatial analysis.
44

55
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/giswqs/python-geospatial/master)
66
[![Pangeo](http://binder.pangeo.io/badge.svg)](http://binder.pangeo.io/v2/gh/giswqs/python-geospatial/master)
@@ -10,9 +10,11 @@ A collection of Python packages for geospatial analysis with binder-ready notebo
1010
Author: Qiusheng Wu (https://wetlands.io | [email protected])
1111

1212

13+
## Installation
1314

15+
It is highly recommended that you use the [conda](https://conda.io/docs/index.html) package manager to install all the requirements. You can either install [Miniconda](https://conda.io/miniconda.html) or the (larger) [Anaconda](https://www.anaconda.com/download/) distribution. It is also recommended that you install [git](https://git-scm.com/downloads) so that you can clone this GitHub reposiotry to your computer.
1416

15-
## Installation
17+
Once conda and git are installed, the following commands will create a virtual Python environment named **pygeo** and install all the required packages:
1618

1719
```
1820
git clone https://github.com/giswqs/python-geospatial.git
@@ -29,6 +31,95 @@ Launch the interactive notebook tutorial with **mybinder.org** or **binder.pange
2931
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/giswqs/python-geospatial/master)
3032
[![Pangeo](http://binder.pangeo.io/badge.svg)](http://binder.pangeo.io/v2/gh/giswqs/python-geospatial/master)
3133

34+
## Python Packages
35+
36+
This list of Python packages is adapted from the Python list of [Awesome Geospatial](https://github.com/sacridini/Awesome-Geospatial#python). All the listed Python packages have been pre-installed in the binder environment.
37+
38+
### Geospatial Analysis
39+
* [whitebox](https://github.com/giswqs/whitebox) :zap: - A Python package for advanced geospatial data analysis based on [WhiteboxTools](https://github.com/jblindsay/whitebox-tools).
40+
* [lidar](https://github.com/giswqs/lidar) - lidar is a toolset for terrain and hydrological analysis using digital elevation models (DEMs).
41+
* [pygis](https://github.com/giswqs/pygis) - pygis is a collection of Python snippets for geospatial analysis.
42+
* [ArcGIS Python API](https://developers.arcgis.com/python/) - ArcGIS API for Python is a Python library for working with maps and geospatial data, powered by web GIS.
43+
* [dask-rasterio](https://github.com/dymaxionlabs/dask-rasterio) - Read and write rasters in parallel using Rasterio and Dask.
44+
* [earthengine-api](https://anaconda.org/conda-forge/earthengine-api) :zap: - The Earth Engine Python API allows developers to interact with Google Earth Engine.
45+
* [Fiona](http://toblerity.org/fiona/) :zap: - For making it easy to read/write geospatial data formats.
46+
* [GDAL](https://anaconda.org/conda-forge/gdal) - The Geospatial Data Abstraction Library for reading and writing raster and vector geospatial data formats.
47+
* [geeup](https://github.com/samapriya/geeup) - Simple CLI for Earth Engine Uploads.
48+
* [geojson-area](https://github.com/scisco/area) - Calculate the area inside of any GeoJSON geometry. This is a port of Mapbox's geojson-area for Python.
49+
* [geojsonio](https://github.com/jwass/geojsonio.py) - Open GeoJSON data on geojson.io from Python.
50+
* [GeoPandas](https://github.com/geopandas/geopandas) - Python tools for geographic data.
51+
* [GIPPY](https://github.com/gipit/gippy) - Geospatial Image Processing for Python.
52+
* [gpdvega](https://github.com/iliatimofeev/gpdvega) - gpdvega is a bridge between GeoPandas and Altair that allows to seamlessly chart geospatial data.
53+
* [mapboxgl-jupyter](https://github.com/mapbox/mapboxgl-jupyter) - Use Mapbox GL JS to visualize data in a Python Jupyter notebook.
54+
* [networkx](http://networkx.github.io/) - To work with networks.
55+
* [OSMnet](https://github.com/UDST/osmnet) - Tools for the extraction of OpenStreetMap street network data.
56+
* [pandana](https://github.com/UDST/pandana) - Pandas Network Analysis - dataframes of network queries, quickly.
57+
* [Peartree](https://github.com/kuanb/peartree) - Peartree: A library for converting transit data into a directed graph for network analysis.
58+
* [pygdal](https://pypi.org/project/pygdal/) - Virtualenv and setuptools friendly version of standard GDAL python bindings.
59+
* [pymap3d](https://github.com/scivision/pymap3d) - Python 3D coordinate conversions for geospace ecef enu eci.
60+
* [Pyncf](https://github.com/karimbahgat/pyncf) - Pure Python NetCDF file reading and writing.
61+
* [PyProj](https://github.com/jswhit/pyproj) - For conversions between projections.
62+
* [PySAL](http://pysal.readthedocs.io/en/latest/) - For all your spatial econometrics needs.
63+
* [PyShp](https://code.google.com/archive/p/pyshp/) - For reading and writing shapefiles.
64+
* [rasterio](https://github.com/mapbox/rasterio) :zap: - rasterio employs GDAL under the hood for file I/O and raster formatting.
65+
* [rasterstats](https://github.com/perrygeo/python-rasterstats/) - Python module for summarizing geospatial raster datasets based on vector geometries.
66+
* [rio-cogeo](https://github.com/mapbox/rio-cogeo) - CloudOptimized GeoTIFF creation plugin for rasterio.
67+
* [rio-color](https://github.com/mapbox/rio-color) - Color correction plugin for rasterio.
68+
* [rio-hist](https://github.com/mapbox/rio-hist) - Histogram matching plugin for rasterio.
69+
* [rio-tiler](https://github.com/mapbox/rio-tiler) - Get mercator tile from landsat, sentinel or other AWS hosted raster.
70+
* [Rtree](http://toblerity.org/rtree/) - For efficiently querying spatial data.
71+
* [sentinelhub](https://github.com/sentinel-hub/sentinelhub-py) - Download and process satellite imagery in Python scripts using Sentinel Hub services.
72+
* [sentinelsat](https://github.com/sentinelsat/sentinelsat) - Search and download Copernicus Sentinel satellite images.
73+
* [Shapely](https://pypi.python.org/pypi/Shapely) - Manipulation and analysis of geometric objects in the Cartesian plane.
74+
* [ts-raster](https://github.com/adbeda/ts-raster) - ts-raster is a python package for analyzing time-series characteristics from raster data.
75+
* [urbansim](https://github.com/UDST/urbansim) - New version of UrbanSim, a platform for modeling metropolitan real estate markets.
76+
* [USGS API](https://github.com/kapadia/usgs) - USGS is a python module for interfacing with the US Geological Survey's API.
77+
* [Verde](https://github.com/fatiando/verde) - Verde is a Python library for processing spatial data and interpolating it on regular grids.
78+
* [xarray](http://xarray.pydata.org/en/stable/) - xarray is an open source project and Python package that aims to bring the labeled data power of pandas to the physical sciences.
79+
80+
81+
### Mapping/Plotting
82+
* [basemap](https://github.com/matplotlib/basemap) - Plot on map projections (with coastlines and political boundaries) using matplotlib.
83+
* [bokeh](https://github.com/bokeh/bokeh) - Interactive Web Plotting for Python.
84+
* [Cartopy](http://scitools.org.uk/cartopy/) - A library providing cartographic tools for python for plotting spatial data.
85+
* [Descartes](https://pypi.python.org/pypi/descartes) - Plot geometries in matplotlib.
86+
* [geoplot](https://github.com/ResidentMario/geoplot) - geoplot is a high-level Python geospatial plotting library.
87+
* [geopy](https://github.com/geopy/geopy) - geopy is a Python 2 and 3 client for several popular geocoding web services.
88+
* [folium](https://github.com/python-visualization/folium) - Python Data, Leaflet.js Maps.
89+
* [matplotlib](http://matplotlib.org/) - Python 2D plotting library.
90+
* [mplleaflet](https://github.com/jwass/mplleaflet) - mplleaflet converts a matplotlib plot into a webpage containing a pannable, zoomable Leaflet map.
91+
* [pyWPS](http://pywps.org/) - An implementation of the Web Processing Service standard from the Open Geospatial Consortium.
92+
* [pyCSW](http://pycsw.org/) - Fully implements the OpenGIS Catalogue Service Implementation Specification.
93+
94+
### Deep Learning
95+
* [label-maker](https://github.com/developmentseed/label-maker) - Data Preparation for Satellite Machine Learning.
96+
* [label-maker-binder](https://github.com/giswqs/label-maker-binder/pulse) - Using label-maker in an interactive notebook on the cloud.
97+
* [Keras](https://keras.io/) - Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano.
98+
* [TensorFlow](https://www.tensorflow.org/) - TensorFlow is an open source software library for numerical computation using data flow graphs.
99+
100+
101+
### General Python
102+
103+
* [dask](https://github.com/dask/dask) - Dask is a flexible parallel computing library for analytics.
104+
* [imageio](https://imageio.github.io/) - imageio provides an easy interface to read and write a wide range of image data.
105+
* [Mahotas](https://github.com/luispedro/mahotas) - Mahotas is a library of fast computer vision algorithms (all implemented in C++ for speed) operating over numpy arrays.
106+
* [NumPy](http://www.numpy.org/) - NumPy is the fundamental package for scientific computing with Python.
107+
* [Pandas](http://pandas.pydata.org/) - Open source library providing high-performance, easy-to-use data structures and data analysis tools.
108+
* [scikit-image](http://scikit-image.org/) - Scikit-image is a collection of algorithms for image processing.
109+
* [scikit-learn](https://github.com/scikit-learn/scikit-learn) - scikit-learn is a Python module for machine learning built on top of SciPy.
110+
* [SciPy](https://github.com/scipy/scipy) - SciPy is open-source software for mathematics, science, and engineering.
111+
* [Statsmodels](http://statsmodels.sourceforge.net/) - Python module that allows users to explore data, estimate statistical models, and perform statistical tests.
112+
113+
## Cloud Computing Platforms
114+
115+
116+
117+
* [Google Earth Engine](https://earthengine.google.com/) :zap: - Planetary-scale geospatial analysis for everyone.
118+
* [Pangeo](http://pangeo.io/) - A community platform for Big Data geoscience.
119+
* [Geospatial Big Data Platform (GBDX)](https://platform.digitalglobe.com/gbdx/) - Cloud computing platform from Digital Globe.
120+
* [Radiant Earth](https://www.radiant.earth/) - Open-source cloud computing infrastructure for geospatial analysis.
121+
* [Sentinel Playground](https://www.sentinel-hub.com/) - Cloud platform for analysis of Sentinel-2A and B and so on.
122+
* [Vane: Query Language](https://owm.io/vaneLanguage) - Creating Basemaps from different satellite images with online processing and computing, with global coverage.
32123

33124
## References
34125

@@ -37,4 +128,8 @@ Launch the interactive notebook tutorial with **mybinder.org** or **binder.pange
37128
* [python-geospatial-ecosystem](https://github.com/loicdtx/python-geospatial-ecosystem)
38129
* [Automating-GIS-processes](https://github.com/Automating-GIS-processes/2018)
39130
* [Geo-Python](https://github.com/geo-python/2018)
40-
* [Essential geospatial Python libraries](https://medium.com/@chrieke/essential-geospatial-python-libraries-5d82fcc38731)
131+
* [scipy2018-geospatial-data](https://github.com/geopandas/scipy2018-geospatial-data)
132+
* [Geospatial_Data_with_Python](https://github.com/SocialDataSci/Geospatial_Data_with_Python)
133+
* [Essential geospatial Python libraries](https://medium.com/@chrieke/essential-geospatial-python-libraries-5d82fcc38731)
134+
* [Geo-spatial analysis with Python](https://medium.com/@lisa.mitford/geo-spatial-analysis-with-python-fdddd69eebea)
135+
* [From Analysis Ready Data to Analysis Engines and Everything in between](https://medium.com/@samapriyaroy/from-analysis-ready-data-to-analysis-engines-and-everything-in-between-676d98792d2e)

binder/environment.yml

+25-1
Original file line numberDiff line numberDiff line change
@@ -14,31 +14,55 @@ dependencies:
1414
- scikit-learn
1515
- scipy
1616
- pip:
17+
- area
1718
- bokeh
1819
- cython
20+
- dask-rasterio
1921
- descartes
2022
- descartes
2123
- folium
24+
- geeup
2225
- geojsonio
2326
- geopandas
27+
- geoplot
28+
- geopy
29+
- gippy
30+
- gpdvega
2431
- h5py
2532
- lidar
33+
- mahotas
2634
- mapboxgl
35+
- mplleaflet
2736
- oauth2client
2837
- pandana
38+
- peartree
2939
- plotly
3040
- pygdal
3141
- pygis
42+
- pymap3d
3243
- pyModis
3344
- pysal
45+
- pycsw
46+
- pywps
3447
- rasterio
3548
- rasterstats
3649
- requests
50+
- rio-cogeo
51+
- rio-color
52+
- rio-hist
53+
- rio-tiler
3754
- rtree
3855
- seaborn
3956
- sentinelhub
57+
- sentinelsat
4058
- tifffile
59+
- tsraster
60+
- urbansim
61+
- usgs
62+
- verde
4163
- whitebox
4264
- xarray
4365
- tensorflow
44-
- keras
66+
- keras
67+
- "git+https://github.com/karimbahgat/pyncf.git"
68+
# - "git+https://github.com/matplotlib/basemap.git"

0 commit comments

Comments
 (0)