Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

What is the code of 'NN field compute & warp' ? #43

Open
justinday123 opened this issue Apr 1, 2024 · 1 comment
Open

What is the code of 'NN field compute & warp' ? #43

justinday123 opened this issue Apr 1, 2024 · 1 comment

Comments

@justinday123
Copy link

Hi, thank you for your nice work. Is the part of th code 'NN field compute & warp' is this code?

def prepare_depth_maps(self, model_type='DPT_Large', device='cuda'):
    depth_maps = []
    midas = torch.hub.load("intel-isl/MiDaS", model_type)
    midas.to(device)
    midas.eval()

    midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")

    if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
        transform = midas_transforms.dpt_transform
    else:
        transform = midas_transforms.small_transform

    for i in range(len(self.paths)):
        img = cv2.imread(self.paths[i])
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

        latent_h = img.shape[0] // 8
        latent_w = img.shape[1] // 8
        
        input_batch = transform(img).to(device)
        prediction = midas(input_batch)

        depth_map = torch.nn.functional.interpolate(
            prediction.unsqueeze(1),
            size=(latent_h, latent_w),
            mode="bicubic",
            align_corners=False,
        )
        depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
        depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
        depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
        depth_maps.append(depth_map)

    return torch.cat(depth_maps).to(self.device).to(torch.float16)
@takiee
Copy link

takiee commented Feb 12, 2025

I think you can find it in this file tokenflow_utils.py, function make_tokenflow_attention_block. :)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants