forked from GooFit/GooFit
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTRandom.cc
810 lines (729 loc) · 32 KB
/
TRandom.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
// This file is derived from TRandom.cxx in ROOT version 5.30/06.
// It is distributed under the GNU LGPL. The original copyright notice
// reads:
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
//////////////////////////////////////////////////////////////////////////
//
// TRandom
//
// basic Random number generator class (periodicity = 10**9).
// Note that this is a very simple generator (linear congruential)
// which is known to have defects (the lower random bits are correlated)
// and therefore should NOT be used in any statistical study.
// One should use instead TRandom1, TRandom2 or TRandom3.
// TRandom3, is based on the "Mersenne Twister generator", and is the recommended one,
// since it has good random proprieties (period of about 10**6000 ) and it is fast.
// TRandom1, based on the RANLUX algorithm, has mathematically proven random proprieties
// and a period of about 10**171. It is however slower than the others.
// TRandom2, is based on the Tausworthe generator of L'Ecuyer, and it has the advantage
// of being fast and using only 3 words (of 32 bits) for the state. The period is 10**26.
//
// The following table shows some timings (in nanoseconds/call)
// for the random numbers obtained using an Intel Pentium 3.0 GHz running Linux
// and using the gcc 3.2.3 compiler
//
// TRandom 34 ns/call (BAD Generator)
// TRandom1 242 ns/call
// TRandom2 37 ns/call
// TRandom3 45 ns/call
//
//
// The following basic Random distributions are provided:
// ===================================================
// -Exp(tau)
// -Integer(imax)
// -Gaus(mean,sigma)
// -Rndm()
// -Uniform(x1)
// -Landau(mpv,sigma)
// -Poisson(mean)
// -Binomial(ntot,prob)
//
// Random numbers distributed according to 1-d, 2-d or 3-d distributions
// =====================================================================
// contained in TF1, TF2 or TF3 objects.
// For example, to get a random number distributed following abs(sin(x)/x)*sqrt(x)
// you can do :
// TF1 *f1 = new TF1("f1","abs(sin(x)/x)*sqrt(x)",0,10);
// double r = f1->GetRandom();
// or you can use the UNURAN package. You need in this case to initialize UNURAN
// to the function you would like to generate.
// TUnuran u;
// u.Init(TUnuranDistrCont(f1));
// double r = u.Sample();
//
// The techniques of using directly a TF1,2 or 3 function is powerful and
// can be used to generate numbers in the defined range of the function.
// Getting a number from a TF1,2,3 function is also quite fast.
// UNURAN is a powerful and flexible tool which containes various methods for
// generate random numbers for continuous distributions of one and multi-dimension.
// It requires some set-up (initialization) phase and can be very fast when the distribution
// parameters are not changed for every call.
//
// The following table shows some timings (in nanosecond/call)
// for basic functions, TF1 functions and using UNURAN obtained running
// the tutorial math/testrandom.C
// Numbers have been obtained on an Intel Xeon Quad-core Harpertown (E5410) 2.33 GHz running
// Linux SLC4 64 bit and compiled with gcc 3.4
//
// Distribution nanoseconds/call
// TRandom TRandom1 TRandom2 TRandom3
// Rndm.............. 5.000 105.000 7.000 10.000
// RndmArray......... 4.000 104.000 6.000 9.000
// Gaus.............. 36.000 180.000 40.000 48.000
// Rannor............ 118.000 220.000 120.000 124.000
// Landau............ 22.000 123.000 26.000 31.000
// Exponential....... 93.000 198.000 98.000 104.000
// Binomial(5,0.5)... 30.000 548.000 46.000 65.000
// Binomial(15,0.5).. 75.000 1615.000 125.000 178.000
// Poisson(3)........ 96.000 494.000 109.000 125.000
// Poisson(10)....... 138.000 1236.000 165.000 203.000
// Poisson(70)....... 818.000 1195.000 835.000 844.000
// Poisson(100)...... 837.000 1218.000 849.000 864.000
// GausTF1........... 83.000 180.000 87.000 88.000
// LandauTF1......... 80.000 180.000 83.000 86.000
// GausUNURAN........ 40.000 139.000 41.000 44.000
// PoissonUNURAN(10). 85.000 271.000 92.000 102.000
// PoissonUNURAN(100) 62.000 256.000 69.000 78.000
//
// Note that the time to generate a number from an arbitrary TF1 function
// using TF1::GetRandom or using TUnuran is independent of the complexity of the function.
//
// TH1::FillRandom(TH1 *) or TH1::FillRandom(const char *tf1name)
// ==============================================================
// can be used to fill an histogram (1-d, 2-d, 3-d from an existing histogram
// or from an existing function.
//
// Note this interesting feature when working with objects
// =======================================================
// You can use several TRandom objects, each with their "independent"
// random sequence. For example, one can imagine
// TRandom *eventGenerator = new TRandom();
// TRandom *tracking = new TRandom();
// eventGenerator can be used to generate the event kinematics.
// tracking can be used to track the generated particles with random numbers
// independent from eventGenerator.
// This very interesting feature gives the possibility to work with simple
// and very fast random number generators without worrying about
// random number periodicity as it was the case with Fortran.
// One can use TRandom::SetSeed to modify the seed of one generator.
//
// a TRandom object may be written to a Root file
// ==============================================
// -as part of another object
// -or with its own key (example gRandom->Write("Random");
//
//////////////////////////////////////////////////////////////////////////
#include "TRandom.hh"
#include "TRandom3.hh"
#include <time.h>
#include <cmath>
//______________________________________________________________________________
TRandom::TRandom(unsigned int seed) {
//*-*-*-*-*-*-*-*-*-*-*default constructor*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ===================
SetSeed(seed);
gRandom = this;
}
//______________________________________________________________________________
TRandom::~TRandom() {
//*-*-*-*-*-*-*-*-*-*-*default destructor*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==================
if (gRandom == this) gRandom = 0;
}
//______________________________________________________________________________
int TRandom::Binomial(int ntot, double prob)
{
// Generates a random integer N according to the binomial law
// Coded from Los Alamos report LA-5061-MS
//
// N is binomially distributed between 0 and ntot inclusive
// with mean prob*ntot.
// prob is between 0 and 1.
//
// Note: This function should not be used when ntot is large (say >100).
// The normal approximation is then recommended instead
// (with mean =*ntot+0.5 and standard deviation sqrt(ntot*prob*(1-prob)).
if (prob < 0 || prob > 1) return 0;
int n = 0;
for (int i=0;i<ntot;i++) {
if (Rndm() > prob) continue;
n++;
}
return n;
}
//______________________________________________________________________________
double TRandom::BreitWigner(double mean, double gamma)
{
// Return a number distributed following a BreitWigner function with mean and gamma
double rval, displ;
rval = 2*Rndm() - 1;
displ = 0.5*gamma*tan(rval*M_PI_2);
return (mean+displ);
}
//______________________________________________________________________________
void TRandom::Circle(double &x, double &y, double r)
{
// generates random vectors, uniformly distributed over a circle of given radius.
// Input : r = circle radius
// Output: x,y a random 2-d vector of length r
double phi = Uniform(0,2*M_PI);
x = r*cos(phi);
y = r*sin(phi);
}
//______________________________________________________________________________
double TRandom::Exp(double tau)
{
// returns an exponential deviate.
//
// exp( -t/tau )
double x = Rndm(); // uniform on ] 0, 1 ]
double t = -tau * log( x ); // convert to exponential distribution
return t;
}
//______________________________________________________________________________
double TRandom::Gaus(double mean, double sigma)
{
//
// samples a random number from the standard Normal (Gaussian) Distribution
// with the given mean and sigma.
// Uses the Acceptance-complement ratio from W. Hoermann and G. Derflinger
// This is one of the fastest existing method for generating normal random variables.
// It is a factor 2/3 faster than the polar (Box-Muller) method used in the previous
// version of TRandom::Gaus. The speed is comparable to the Ziggurat method (from Marsaglia)
// implemented for example in GSL and available in the MathMore library.
//
//
// REFERENCE: - W. Hoermann and G. Derflinger (1990):
// The ACR Method for generating normal random variables,
// OR Spektrum 12 (1990), 181-185.
//
// Implementation taken from
// UNURAN (c) 2000 W. Hoermann & J. Leydold, Institut f. Statistik, WU Wien
///////////////////////////////////////////////////////////////////////////////
const double kC1 = 1.448242853;
const double kC2 = 3.307147487;
const double kC3 = 1.46754004;
const double kD1 = 1.036467755;
const double kD2 = 5.295844968;
const double kD3 = 3.631288474;
const double kHm = 0.483941449;
const double kZm = 0.107981933;
const double kHp = 4.132731354;
const double kZp = 18.52161694;
const double kPhln = 0.4515827053;
const double kHm1 = 0.516058551;
const double kHp1 = 3.132731354;
const double kHzm = 0.375959516;
const double kHzmp = 0.591923442;
/*zhm 0.967882898*/
const double kAs = 0.8853395638;
const double kBs = 0.2452635696;
const double kCs = 0.2770276848;
const double kB = 0.5029324303;
const double kX0 = 0.4571828819;
const double kYm = 0.187308492 ;
const double kS = 0.7270572718 ;
const double kT = 0.03895759111;
double result;
double rn,x,y,z;
do {
y = Rndm();
if (y>kHm1) {
result = kHp*y-kHp1; break; }
else if (y<kZm) {
rn = kZp*y-1;
result = (rn>0) ? (1+rn) : (-1+rn);
break;
}
else if (y<kHm) {
rn = Rndm();
rn = rn-1+rn;
z = (rn>0) ? 2-rn : -2-rn;
if ((kC1-y)*(kC3+fabs(z))<kC2) {
result = z; break; }
else {
x = rn*rn;
if ((y+kD1)*(kD3+x)<kD2) {
result = rn; break; }
else if (kHzmp-y<exp(-(z*z+kPhln)/2)) {
result = z; break; }
else if (y+kHzm<exp(-(x+kPhln)/2)) {
result = rn; break; }
}
}
while (1) {
x = Rndm();
y = kYm * Rndm();
z = kX0 - kS*x - y;
if (z>0)
rn = 2+y/x;
else {
x = 1-x;
y = kYm-y;
rn = -(2+y/x);
}
if ((y-kAs+x)*(kCs+x)+kBs<0) {
result = rn; break; }
else if (y<x+kT)
if (rn*rn<4*(kB-log(x))) {
result = rn; break; }
}
} while(0);
return mean + sigma * result;
}
//______________________________________________________________________________
unsigned int TRandom::Integer(unsigned int imax)
{
// returns a random integer on [ 0, imax-1 ].
unsigned int ui;
ui = (unsigned int)(imax*Rndm());
return ui;
}
//______________________________________________________________________________
int TRandom::Poisson(double mean)
{
// Generates a random integer N according to a Poisson law.
// Prob(N) = exp(-mean)*mean^N/Factorial(N)
//
// Use a different procedure according to the mean value.
// The algorithm is the same used by CLHEP
// For lower value (mean < 25) use the rejection method based on
// the exponential
// For higher values use a rejection method comparing with a Lorentzian
// distribution, as suggested by several authors
// This routine since is returning 32 bits integer will not work for values larger than 2*10**9
// One should then use the Trandom::PoissonD for such large values
//
int n;
if (mean <= 0) return 0;
if (mean < 25) {
double expmean = exp(-mean);
double pir = 1;
n = -1;
while(1) {
n++;
pir *= Rndm();
if (pir <= expmean) break;
}
return n;
}
// for large value we use inversion method
else if (mean < 1E9) {
double em, t, y;
double sq, alxm, g;
double pi = M_PI;
sq = sqrt(2.0*mean);
alxm = log(mean);
g = mean*alxm - lgamma(mean + 1.0);
do {
do {
y = tan(pi*Rndm());
em = sq*y + mean;
} while( em < 0.0 );
em = floor(em);
t = 0.9*(1.0 + y*y)* exp(em*alxm - lgamma(em + 1.0) - g);
} while( Rndm() > t );
return static_cast<int> (em);
}
else {
// use Gaussian approximation vor very large values
n = int(Gaus(0,1)*sqrt(mean) + mean +0.5);
return n;
}
}
//______________________________________________________________________________
double TRandom::PoissonD(double mean)
{
// Generates a random number according to a Poisson law.
// Prob(N) = exp(-mean)*mean^N/Factorial(N)
//
// This function is a variant of TRandom::Poisson returning a double
// instead of an integer.
//
int n;
if (mean <= 0) return 0;
if (mean < 25) {
double expmean = exp(-mean);
double pir = 1;
n = -1;
while(1) {
n++;
pir *= Rndm();
if (pir <= expmean) break;
}
return static_cast<double>(n);
}
// for large value we use inversion method
else if (mean < 1E9) {
double em, t, y;
double sq, alxm, g;
double pi = M_PI;
sq = sqrt(2.0*mean);
alxm = log(mean);
g = mean*alxm - lgamma(mean + 1.0);
do {
do {
y = tan(pi*Rndm());
em = sq*y + mean;
} while( em < 0.0 );
em = floor(em);
t = 0.9*(1.0 + y*y)* exp(em*alxm - lgamma(em + 1.0) - g);
} while( Rndm() > t );
return em;
} else {
// use Gaussian approximation vor very large values
return Gaus(0,1)*sqrt(mean) + mean +0.5;
}
}
//______________________________________________________________________________
void TRandom::Rannor(float &a, float &b)
{
// Return 2 numbers distributed following a gaussian with mean=0 and sigma=1
double r, x, y, z;
y = Rndm();
z = Rndm();
x = z * 6.28318530717958623;
r = sqrt(-2*log(y));
a = (float)(r * sin(x));
b = (float)(r * cos(x));
}
//______________________________________________________________________________
void TRandom::Rannor(double &a, double &b)
{
// Return 2 numbers distributed following a gaussian with mean=0 and sigma=1
double r, x, y, z;
y = Rndm();
z = Rndm();
x = z * 6.28318530717958623;
r = sqrt(-2*log(y));
a = r * sin(x);
b = r * cos(x);
}
//______________________________________________________________________________
double TRandom::Rndm(int)
{
// Machine independent random number generator.
// Based on the BSD Unix (Rand) Linear congrential generator
// Produces uniformly-distributed floating points between 0 and 1.
// Identical sequence on all machines of >= 32 bits.
// Periodicity = 2**31
// generates a number in ]0,1]
// Note that this is a generator which is known to have defects
// (the lower random bits are correlated) and therefore should NOT be
// used in any statistical study.
#ifdef OLD_TRANDOM_IMPL
const double kCONS = 4.6566128730774E-10;
const int kMASK24 = 2147483392;
fSeed *= 69069;
unsigned int jy = (fSeed&kMASK24); // Set lower 8 bits to zero to assure exact float
if (jy) return kCONS*jy;
return Rndm();
#endif
const double kCONS = 4.6566128730774E-10; // (1/pow(2,31))
fSeed = (1103515245 * fSeed + 12345) & 0x7fffffffUL;
if (fSeed) return kCONS*fSeed;
return Rndm();
}
//______________________________________________________________________________
void TRandom::RndmArray(int n, double *array)
{
// Return an array of n random numbers uniformly distributed in ]0,1]
const double kCONS = 4.6566128730774E-10; // (1/pow(2,31))
int i=0;
while (i<n) {
fSeed = (1103515245 * fSeed + 12345) & 0x7fffffffUL;
if (fSeed) {array[i] = kCONS*fSeed; i++;}
}
}
//______________________________________________________________________________
void TRandom::RndmArray(int n, float *array)
{
// Return an array of n random numbers uniformly distributed in ]0,1]
const double kCONS = 4.6566128730774E-10; // (1/pow(2,31))
const int kMASK24 = 0x7fffff00;
unsigned int jy;
int i=0;
while (i<n) {
fSeed = (1103515245 * fSeed + 12345) & 0x7fffffffUL;
jy = (fSeed&kMASK24); // Set lower 8 bits to zero to assure exact float
if (fSeed) {array[i] = float(kCONS*fSeed); i++;}
}
}
//______________________________________________________________________________
void TRandom::SetSeed(unsigned int seed)
{
// Set the random generator seed. Note that default value is zero, which is different than the
// default value used when constructing the class.
// If the seed is zero the seed is set to a random value
// which in case of TRandom depends on the machine clock.
// Note that the machine clock is returned with a precision of 1 second.
// If one calls SetSeed(0) within a loop and the loop time is less than 1s,
// all generated numbers will be identical!
// Instead if a different generator implementation is used (TRandom1 , 2 or 3) the seed is generated using
// a 128 bit UUID. This results in different seeds and then random sequence for every SetSeed(0) call.
if( seed==0 ) {
time_t curtime; // Set 'random' seed number if seed=0
time(&curtime); // Get current time in fSeed.
fSeed = (unsigned int)curtime;
} else {
fSeed = seed;
}
}
//______________________________________________________________________________
void TRandom::Sphere(double &x, double &y, double &z, double r)
{
// generates random vectors, uniformly distributed over the surface
// of a sphere of given radius.
// Input : r = sphere radius
// Output: x,y,z a random 3-d vector of length r
// Method: (based on algorithm suggested by Knuth and attributed to Robert E Knop)
// which uses less random numbers than the CERNLIB RN23DIM algorithm
double a=0,b=0,r2=1;
while (r2 > 0.25) {
a = Rndm() - 0.5;
b = Rndm() - 0.5;
r2 = a*a + b*b;
}
z = r* ( -1. + 8.0 * r2 );
double scale = 8.0 * r * sqrt(0.25 - r2);
x = a*scale;
y = b*scale;
}
//______________________________________________________________________________
double TRandom::Uniform(double x1)
{
// returns a uniform deviate on the interval ]0, x1].
double ans = Rndm();
return x1*ans;
}
//______________________________________________________________________________
double TRandom::Uniform(double x1, double x2)
{
// returns a uniform deviate on the interval ]x1, x2].
double ans= Rndm();
return x1 + (x2-x1)*ans;
}
double TRandom::landau_quantile(double z, double xi) {
// LANDAU quantile : algorithm from CERNLIB G110 ranlan
// with scale parameter xi
// Converted by Rene Brun from CERNLIB routine ranlan(G110),
// Moved and adapted to QuantFuncMathCore by B. List 29.4.2010
static double f[982] = {
0 , 0 , 0 ,0 ,0 ,-2.244733,
-2.204365,-2.168163,-2.135219,-2.104898,-2.076740,-2.050397,
-2.025605,-2.002150,-1.979866,-1.958612,-1.938275,-1.918760,
-1.899984,-1.881879,-1.864385,-1.847451,-1.831030,-1.815083,
-1.799574,-1.784473,-1.769751,-1.755383,-1.741346,-1.727620,
-1.714187,-1.701029,-1.688130,-1.675477,-1.663057,-1.650858,
-1.638868,-1.627078,-1.615477,-1.604058,-1.592811,-1.581729,
-1.570806,-1.560034,-1.549407,-1.538919,-1.528565,-1.518339,
-1.508237,-1.498254,-1.488386,-1.478628,-1.468976,-1.459428,
-1.449979,-1.440626,-1.431365,-1.422195,-1.413111,-1.404112,
-1.395194,-1.386356,-1.377594,-1.368906,-1.360291,-1.351746,
-1.343269,-1.334859,-1.326512,-1.318229,-1.310006,-1.301843,
-1.293737,-1.285688,-1.277693,-1.269752,-1.261863,-1.254024,
-1.246235,-1.238494,-1.230800,-1.223153,-1.215550,-1.207990,
-1.200474,-1.192999,-1.185566,-1.178172,-1.170817,-1.163500,
-1.156220,-1.148977,-1.141770,-1.134598,-1.127459,-1.120354,
-1.113282,-1.106242,-1.099233,-1.092255,
-1.085306,-1.078388,-1.071498,-1.064636,-1.057802,-1.050996,
-1.044215,-1.037461,-1.030733,-1.024029,-1.017350,-1.010695,
-1.004064, -.997456, -.990871, -.984308, -.977767, -.971247,
-.964749, -.958271, -.951813, -.945375, -.938957, -.932558,
-.926178, -.919816, -.913472, -.907146, -.900838, -.894547,
-.888272, -.882014, -.875773, -.869547, -.863337, -.857142,
-.850963, -.844798, -.838648, -.832512, -.826390, -.820282,
-.814187, -.808106, -.802038, -.795982, -.789940, -.783909,
-.777891, -.771884, -.765889, -.759906, -.753934, -.747973,
-.742023, -.736084, -.730155, -.724237, -.718328, -.712429,
-.706541, -.700661, -.694791, -.688931, -.683079, -.677236,
-.671402, -.665576, -.659759, -.653950, -.648149, -.642356,
-.636570, -.630793, -.625022, -.619259, -.613503, -.607754,
-.602012, -.596276, -.590548, -.584825, -.579109, -.573399,
-.567695, -.561997, -.556305, -.550618, -.544937, -.539262,
-.533592, -.527926, -.522266, -.516611, -.510961, -.505315,
-.499674, -.494037, -.488405, -.482777,
-.477153, -.471533, -.465917, -.460305, -.454697, -.449092,
-.443491, -.437893, -.432299, -.426707, -.421119, -.415534,
-.409951, -.404372, -.398795, -.393221, -.387649, -.382080,
-.376513, -.370949, -.365387, -.359826, -.354268, -.348712,
-.343157, -.337604, -.332053, -.326503, -.320955, -.315408,
-.309863, -.304318, -.298775, -.293233, -.287692, -.282152,
-.276613, -.271074, -.265536, -.259999, -.254462, -.248926,
-.243389, -.237854, -.232318, -.226783, -.221247, -.215712,
-.210176, -.204641, -.199105, -.193568, -.188032, -.182495,
-.176957, -.171419, -.165880, -.160341, -.154800, -.149259,
-.143717, -.138173, -.132629, -.127083, -.121537, -.115989,
-.110439, -.104889, -.099336, -.093782, -.088227, -.082670,
-.077111, -.071550, -.065987, -.060423, -.054856, -.049288,
-.043717, -.038144, -.032569, -.026991, -.021411, -.015828,
-.010243, -.004656, .000934, .006527, .012123, .017722,
.023323, .028928, .034535, .040146, .045759, .051376,
.056997, .062620, .068247, .073877,
.079511, .085149, .090790, .096435, .102083, .107736,
.113392, .119052, .124716, .130385, .136057, .141734,
.147414, .153100, .158789, .164483, .170181, .175884,
.181592, .187304, .193021, .198743, .204469, .210201,
.215937, .221678, .227425, .233177, .238933, .244696,
.250463, .256236, .262014, .267798, .273587, .279382,
.285183, .290989, .296801, .302619, .308443, .314273,
.320109, .325951, .331799, .337654, .343515, .349382,
.355255, .361135, .367022, .372915, .378815, .384721,
.390634, .396554, .402481, .408415, .414356, .420304,
.426260, .432222, .438192, .444169, .450153, .456145,
.462144, .468151, .474166, .480188, .486218, .492256,
.498302, .504356, .510418, .516488, .522566, .528653,
.534747, .540850, .546962, .553082, .559210, .565347,
.571493, .577648, .583811, .589983, .596164, .602355,
.608554, .614762, .620980, .627207, .633444, .639689,
.645945, .652210, .658484, .664768,
.671062, .677366, .683680, .690004, .696338, .702682,
.709036, .715400, .721775, .728160, .734556, .740963,
.747379, .753807, .760246, .766695, .773155, .779627,
.786109, .792603, .799107, .805624, .812151, .818690,
.825241, .831803, .838377, .844962, .851560, .858170,
.864791, .871425, .878071, .884729, .891399, .898082,
.904778, .911486, .918206, .924940, .931686, .938446,
.945218, .952003, .958802, .965614, .972439, .979278,
.986130, .992996, .999875, 1.006769, 1.013676, 1.020597,
1.027533, 1.034482, 1.041446, 1.048424, 1.055417, 1.062424,
1.069446, 1.076482, 1.083534, 1.090600, 1.097681, 1.104778,
1.111889, 1.119016, 1.126159, 1.133316, 1.140490, 1.147679,
1.154884, 1.162105, 1.169342, 1.176595, 1.183864, 1.191149,
1.198451, 1.205770, 1.213105, 1.220457, 1.227826, 1.235211,
1.242614, 1.250034, 1.257471, 1.264926, 1.272398, 1.279888,
1.287395, 1.294921, 1.302464, 1.310026, 1.317605, 1.325203,
1.332819, 1.340454, 1.348108, 1.355780,
1.363472, 1.371182, 1.378912, 1.386660, 1.394429, 1.402216,
1.410024, 1.417851, 1.425698, 1.433565, 1.441453, 1.449360,
1.457288, 1.465237, 1.473206, 1.481196, 1.489208, 1.497240,
1.505293, 1.513368, 1.521465, 1.529583, 1.537723, 1.545885,
1.554068, 1.562275, 1.570503, 1.578754, 1.587028, 1.595325,
1.603644, 1.611987, 1.620353, 1.628743, 1.637156, 1.645593,
1.654053, 1.662538, 1.671047, 1.679581, 1.688139, 1.696721,
1.705329, 1.713961, 1.722619, 1.731303, 1.740011, 1.748746,
1.757506, 1.766293, 1.775106, 1.783945, 1.792810, 1.801703,
1.810623, 1.819569, 1.828543, 1.837545, 1.846574, 1.855631,
1.864717, 1.873830, 1.882972, 1.892143, 1.901343, 1.910572,
1.919830, 1.929117, 1.938434, 1.947781, 1.957158, 1.966566,
1.976004, 1.985473, 1.994972, 2.004503, 2.014065, 2.023659,
2.033285, 2.042943, 2.052633, 2.062355, 2.072110, 2.081899,
2.091720, 2.101575, 2.111464, 2.121386, 2.131343, 2.141334,
2.151360, 2.161421, 2.171517, 2.181648, 2.191815, 2.202018,
2.212257, 2.222533, 2.232845, 2.243195,
2.253582, 2.264006, 2.274468, 2.284968, 2.295507, 2.306084,
2.316701, 2.327356, 2.338051, 2.348786, 2.359562, 2.370377,
2.381234, 2.392131, 2.403070, 2.414051, 2.425073, 2.436138,
2.447246, 2.458397, 2.469591, 2.480828, 2.492110, 2.503436,
2.514807, 2.526222, 2.537684, 2.549190, 2.560743, 2.572343,
2.583989, 2.595682, 2.607423, 2.619212, 2.631050, 2.642936,
2.654871, 2.666855, 2.678890, 2.690975, 2.703110, 2.715297,
2.727535, 2.739825, 2.752168, 2.764563, 2.777012, 2.789514,
2.802070, 2.814681, 2.827347, 2.840069, 2.852846, 2.865680,
2.878570, 2.891518, 2.904524, 2.917588, 2.930712, 2.943894,
2.957136, 2.970439, 2.983802, 2.997227, 3.010714, 3.024263,
3.037875, 3.051551, 3.065290, 3.079095, 3.092965, 3.106900,
3.120902, 3.134971, 3.149107, 3.163312, 3.177585, 3.191928,
3.206340, 3.220824, 3.235378, 3.250005, 3.264704, 3.279477,
3.294323, 3.309244, 3.324240, 3.339312, 3.354461, 3.369687,
3.384992, 3.400375, 3.415838, 3.431381, 3.447005, 3.462711,
3.478500, 3.494372, 3.510328, 3.526370,
3.542497, 3.558711, 3.575012, 3.591402, 3.607881, 3.624450,
3.641111, 3.657863, 3.674708, 3.691646, 3.708680, 3.725809,
3.743034, 3.760357, 3.777779, 3.795300, 3.812921, 3.830645,
3.848470, 3.866400, 3.884434, 3.902574, 3.920821, 3.939176,
3.957640, 3.976215, 3.994901, 4.013699, 4.032612, 4.051639,
4.070783, 4.090045, 4.109425, 4.128925, 4.148547, 4.168292,
4.188160, 4.208154, 4.228275, 4.248524, 4.268903, 4.289413,
4.310056, 4.330832, 4.351745, 4.372794, 4.393982, 4.415310,
4.436781, 4.458395, 4.480154, 4.502060, 4.524114, 4.546319,
4.568676, 4.591187, 4.613854, 4.636678, 4.659662, 4.682807,
4.706116, 4.729590, 4.753231, 4.777041, 4.801024, 4.825179,
4.849511, 4.874020, 4.898710, 4.923582, 4.948639, 4.973883,
4.999316, 5.024942, 5.050761, 5.076778, 5.102993, 5.129411,
5.156034, 5.182864, 5.209903, 5.237156, 5.264625, 5.292312,
5.320220, 5.348354, 5.376714, 5.405306, 5.434131, 5.463193,
5.492496, 5.522042, 5.551836, 5.581880, 5.612178, 5.642734,
5.673552, 5.704634, 5.735986, 5.767610,
5.799512, 5.831694, 5.864161, 5.896918, 5.929968, 5.963316,
5.996967, 6.030925, 6.065194, 6.099780, 6.134687, 6.169921,
6.205486, 6.241387, 6.277630, 6.314220, 6.351163, 6.388465,
6.426130, 6.464166, 6.502578, 6.541371, 6.580553, 6.620130,
6.660109, 6.700495, 6.741297, 6.782520, 6.824173, 6.866262,
6.908795, 6.951780, 6.995225, 7.039137, 7.083525, 7.128398,
7.173764, 7.219632, 7.266011, 7.312910, 7.360339, 7.408308,
7.456827, 7.505905, 7.555554, 7.605785, 7.656608, 7.708035,
7.760077, 7.812747, 7.866057, 7.920019, 7.974647, 8.029953,
8.085952, 8.142657, 8.200083, 8.258245, 8.317158, 8.376837,
8.437300, 8.498562, 8.560641, 8.623554, 8.687319, 8.751955,
8.817481, 8.883916, 8.951282, 9.019600, 9.088889, 9.159174,
9.230477, 9.302822, 9.376233, 9.450735, 9.526355, 9.603118,
9.681054, 9.760191, 9.840558, 9.922186,10.005107,10.089353,
10.174959,10.261958,10.350389,10.440287,10.531693,10.624646,
10.719188,10.815362,10.913214,11.012789,11.114137,11.217307,
11.322352,11.429325,11.538283,11.649285,
11.762390,11.877664,11.995170,12.114979,12.237161,12.361791,
12.488946,12.618708,12.751161,12.886394,13.024498,13.165570,
13.309711,13.457026,13.607625,13.761625,13.919145,14.080314,
14.245263,14.414134,14.587072,14.764233,14.945778,15.131877,
15.322712,15.518470,15.719353,15.925570,16.137345,16.354912,
16.578520,16.808433,17.044929,17.288305,17.538873,17.796967,
18.062943,18.337176,18.620068,18.912049,19.213574,19.525133,
19.847249,20.180480,20.525429,20.882738,21.253102,21.637266,
22.036036,22.450278,22.880933,23.329017,23.795634,24.281981,
24.789364,25.319207,25.873062,26.452634,27.059789,27.696581,
28.365274,29.068370,29.808638,30.589157,31.413354,32.285060,
33.208568,34.188705,35.230920,36.341388,37.527131,38.796172,
40.157721,41.622399,43.202525,44.912465,46.769077,48.792279,
51.005773,53.437996,56.123356,59.103894 };
if (xi <= 0) return 0;
//if (z <= 0) return -std::numeric_limits<double>::infinity();
//if (z >= 1) return std::numeric_limits<double>::infinity();
if (z <= 0) return -10E300;
if (z >= 1) return 10E300;
double ranlan, u, v;
u = 1000*z;
int i = int(u);
u -= i;
if (i >= 70 && i < 800) {
ranlan = f[i-1] + u*(f[i] - f[i-1]);
} else if (i >= 7 && i <= 980) {
ranlan = f[i-1] + u*(f[i]-f[i-1]-0.25*(1-u)*(f[i+1]-f[i]-f[i-1]+f[i-2]));
} else if (i < 7) {
v = std::log(z);
u = 1/v;
ranlan = ((0.99858950+(3.45213058E1+1.70854528E1*u)*u)/
(1 +(3.41760202E1+4.01244582 *u)*u))*
(-std::log(-0.91893853-v)-1);
} else {
u = 1-z;
v = u*u;
if (z <= 0.999) {
ranlan = (1.00060006+2.63991156E2*u+4.37320068E3*v)/
((1 +2.57368075E2*u+3.41448018E3*v)*u);
} else {
ranlan = (1.00001538+6.07514119E3*u+7.34266409E5*v)/
((1 +6.06511919E3*u+6.94021044E5*v)*u);
}
}
return xi*ranlan;
}
double TRandom::Landau(double mpv, double sigma)
{
// Generate a random number following a Landau distribution
// with mpv(most probable value) and sigma.
// Use function landau_quantile(x,sigma) which provides
// the inverse of the landau cumulative distribution.
// landau_quantile has been converted from CERNLIB ranlan(G110).
if (sigma <= 0) return 0;
double x = Rndm();
double res = mpv + landau_quantile(x, sigma);
return res;
}