-
Notifications
You must be signed in to change notification settings - Fork 6
/
encore.cpp
559 lines (473 loc) · 20.6 KB
/
encore.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
// encore.cpp -- Oliver Philcox, 2021. Vaguely based on Daniel Eisenstein's 3PCF code.
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <complex>
#include <sys/time.h>
#include <sys/stat.h>
#include "threevector.hh"
#include "STimer.cc"
// For multi-threading:
#ifdef OPENMP
#include <omp.h>
#endif
// NBIN is the number of bins we'll sort the radii into. Must be at least N-1 for the N-point function
// We output only NPCF with bin1 < bin2 < bin3 etc. to avoid degeneracy and the bins including zero separations
// IF NBIN is changed IT MUST ALSO BE UPDATED IN modules/gpufuncs.h!
#define NBIN 20
// ORDER is the order of the Ylm we'll compute.
// This must be <=MAXORDER, currently hard coded to 10 for 3PCF/4PCF, or 5 for 5PCF, or 3 for 6PCF.
#define ORDER 5
// MAXTHREAD is the maximum number of allowed threads.
// Big trouble if actual number exceeds this!
// No problem if actual number is smaller.
#define MAXTHREAD 40
int nthreads = MAXTHREAD;
typedef unsigned long long int uint64;
// Could swap between single and double precision here.
// Only double precision has been tested.
// Note that the AVX multipole code is always double precision.
typedef double Float;
//typedef float Float;
typedef double3 Float3;
typedef std::complex<double> Complex;
//typedef std::complex<float> Complex;
//0 = CPU
//1 = GPU primary kernel
//2, higher = alternate kernels
short _gpumode = 0;
//kernel for multipoles and pairs -- 2 = new kernel, 1 = old kernel
short _gpump = 2;
bool _gpufloat = false;
bool _gpumixed = false;
//if true, use shared memory for x0i and x2i binning, if false use global memory
bool _shared = true;
//if true, calculate 2PCF only
bool _only2pcf = false;
// We need a vector floor3 function
Float3 floor3(float3 p) {
return Float3(floor(p.x), floor(p.y), floor(p.z));
}
// we need a vector ceil3 function
Float3 ceil3(float3 p) {
return Float3(ceil(p.x), ceil(p.y), ceil(p.z));
}
#define PAGE 4096 // To force some memory alignment.
// Classes specifying cells and grids
#include "modules/Basics.h"
// ========================== Accumulate the two-pcf pair counts ================
class Pairs {
private:
double *xi0, *xi2;
private:
double empty[8]; // Just to try to keep the threads from working on similar memory
public:
Pairs() {
// Initialize the binning
int ec=0;
ec+=posix_memalign((void **) &xi0, PAGE, sizeof(double)*NBIN);
ec+=posix_memalign((void **) &xi2, PAGE, sizeof(double)*NBIN);
assert(ec==0);
for (int j=0; j<NBIN; j++) {
xi0[j] = 0;
xi2[j] = 0;
}
empty[0] = 0.0; // To avoid a warning
}
~Pairs() {
free(xi0);
free(xi2);
}
inline void load(Float *xi0ptr, Float *xi2ptr) {
for (int j=0; j<NBIN; j++) {
xi0[j] = xi0ptr[j];
xi2[j] = xi2ptr[j];
}
}
inline void save(Float *xi0ptr, Float *xi2ptr) {
for (int j=0; j<NBIN; j++) {
xi0ptr[j] = xi0[j];
xi2ptr[j] = xi2[j];
}
}
inline void add(int b, Float dz, Float w) {
// Add up the weighted pair for the monopole and quadrupole correlation function
xi0[b] += w;
xi2[b] += w*(3.0*dz*dz-1)*0.5;
}
void sum_power(Pairs *p) {
// Just add up all of the threaded pairs into the zeroth element
for (int i=0; i<NBIN; i++) {
xi0[i] += p->xi0[i];
xi2[i] += p->xi2[i];
}
}
//
// void report_pairs() {
// for (int j=0; j<NBIN; j++) {
// printf("Pairs %2d %9.0f %9.0f\n",
// j, xi0[j], xi2[j]);
// }
// }
void save_pairs(char* out_string, Float rmin, Float rmax) {
// Print the output isotropic 2PCF counts to file
// Create output directory if not in existence
const char* out_dir;
out_dir = "output";
if (mkdir(out_dir,S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH)==0){
printf("\nCreating output directory\n");
}
// First create output files
char out_name[1000];
snprintf(out_name, sizeof out_name, "output/%s_2pcf.txt", out_string);
FILE * OutFile = fopen(out_name,"w");
// Print some useful information
fprintf(OutFile,"## Bins: %d\n",NBIN);
fprintf(OutFile,"## Minimum Radius = %.2e\n", rmin);
fprintf(OutFile,"## Maximum Radius = %.2e\n", rmax);
fprintf(OutFile,"## Format: Row 1 = radial bin 1, Row 2 = xi^a\n");
// First print the indices of the first radial bin
for(int i=0;i<NBIN;i++) fprintf(OutFile,"%2d\t",i);
fprintf(OutFile," \n");
// Now print the 2PCF, ell-by-ell.
for (int i=0; i<NBIN; i++) fprintf(OutFile,"%le\t",xi0[i]);
fprintf(OutFile,"\n");
fflush(NULL);
// Close open files
fclose(OutFile);
printf("\n2PCF Output saved to %s\n",out_name);
}
};
Pairs pairs[MAXTHREAD];
// ==================== Setting up the multipoles ==================
// The total number of Cartesian multipoles, satisfying a+b+c<=ORDER
#define NMULT ((ORDER+1)*(ORDER+2)*(ORDER+3)/6)
// We adopt a convention in which we loop over ell and then m=0..ell
#define NLM ((ORDER+1)*(ORDER+2)/2)
#ifdef AVX
#include "externalmultipoles.h"
// typedef struct { double v[4]; } d4;
// An array of pointers to all of the AVX assembly functions
void (*CMptr[16])( d4 *ip1x, d4 *ip2x, d4 *ip1y, d4 *ip2y, d4 *ip1z, d4 *ip2z,
d4 *cx, d4 *cy, d4 *cz, d4 *globalM,
d4 *mass1, d4 *mass2) = {
MultipoleKernel1, MultipoleKernel2, MultipoleKernel3, MultipoleKernel4,
MultipoleKernel5, MultipoleKernel6, MultipoleKernel7, MultipoleKernel8,
MultipoleKernel9, MultipoleKernel10, MultipoleKernel11, MultipoleKernel12,
MultipoleKernel13, MultipoleKernel14, MultipoleKernel15, MultipoleKernel16
};
#endif
// Here's a simple structure for our normalized differences of the positions
typedef struct Xdiff {
Float dx, dy, dz, w;
} Xdiff;
// Include multipoles class
#include "modules/Multipoles.h"
// Include multipole storage code
#include "modules/StoreMultipoles.h"
StoreMultipoles *smload, *smsave;
// Include the NPCF class here
#include "modules/NPCF.h"
NPCF npcf[MAXTHREAD];
void zero_power() {
printf("Initializing %d threads\n", nthreads);
//for (int t=0; t<MAXTHREAD; t++) npcf[t].reset();
for (int t=0; t<nthreads; t++) npcf[t].reset();
}
void sum_power() {
// Just add up all of the threaded power into the zeroth element
//for (int t=0; t<MAXTHREAD; t++)
for (int t=0; t<nthreads; t++)
//printf("# Bin 0 counter for thread %2d: %9lld\n", t, npcf[t].bincounts[0]);
printf("# Bin 0 counter for thread %2d: %d\n", t, npcf[t].bincounts[0]);
//for (int t=1; t<MAXTHREAD; t++)
for (int t=1; t<nthreads; t++)
npcf[0].sum_power(npcf+t);
//for (int t=1; t<MAXTHREAD; t++)
for (int t=1; t<nthreads; t++)
pairs[0].sum_power(pairs+t);
return;
}
// Include class which creates the multipoles, including the special AVX coding
#include "modules/ComputeMultipoles.h"
// Include class which creates / reads in particles and assigns them to a grid
#include "modules/Driver.h"
// ================================ main() =============================
void usage() {
fprintf(stderr, "\nUsage for encore/encoreAVX:\n");
fprintf(stderr, " -in <file>: The input file (space-separated x,y,z,w). Default sample.dat.\n");
fprintf(stderr, " -outstr <outstring>: String to prepend to the output file. Default sample.\n");
fprintf(stderr, " -def: This allows one to accept the defaults without giving other entries.\n");
fprintf(stderr, " -rmin <rmin>: The minimum radius of the smallest pair bin. Default 0.\n");
fprintf(stderr, " -rmax <rmax>: The maximum radius of the largest pair bin. Default 200.\n");
fprintf(stderr, "\n");
fprintf(stderr, " -ran <np>: Ignore any file and use np random perioidic points instead.\n");
fprintf(stderr, " -box <boxsize> : The periodic size of the computational domain, if particles are thrown randomly. Default 400.\n");
fprintf(stderr, " -scale <rescale>: How much to dilate the input positions by. Default 1.\n");
fprintf(stderr, " Negative values causes =boxsize, rescaling unit cube to full periodicity\n");
fprintf(stderr, " -nside <nside>: The grid size for accelerating the pair count. Default 8.\n");
fprintf(stderr, " Recommend having several grid cells per rmax.\n");
fprintf(stderr, "\n");
fprintf(stderr, "Two other important parameters can only be set during compilations:\n");
fprintf(stderr, " ORDER: The maximum ell for primary angular momenta.\n");
fprintf(stderr, " NBIN: The number of radial bins.\n");
fprintf(stderr, "Similarly, the radial bin spacing (currently linear) is hard-coded.\n");
fprintf(stderr, "\n");
fprintf(stderr, "For advanced use, there is an option store the multipoles of positively weighted primary particles.\n");
fprintf(stderr, " -save <filename>: Triggers option to store the multipoles.\n");
fprintf(stderr, "The file can then be reloaded on subsequent runes\n");
fprintf(stderr, " -load <filename>: Triggers option to load the multipoles\n");
fprintf(stderr, "The intention is to allow re-use of DD counts while changing the DR and RR counts.\n");
fprintf(stderr, " -balance: Rescale the negative weights so that the total weight is zero.\n");
fprintf(stderr, " -invert: Multiply all the weights by -1.\n");
fprintf(stderr, " -gpu: GPU mode => 0 = CPU, 1 = GPU, 2+ = GPU alternate kernel. This requires compilation in GPU mode.\n");
fprintf(stderr, " -float: GPU mode => use floats to speed up\n");
fprintf(stderr, " -mixed: GPU mode => use mixed precision - alms are floats, accumulation is doubles\n");
fprintf(stderr, " -global: GPU mode => use global memory always. Default is to offload some calcs to shared memory.\n");
fprintf(stderr, " Shared is faster on HPC GPUs but global is faster on some consumer grade GPUs.\n");
fprintf(stderr, " -2pcf: GPU mode => only calculate 2PCF and exit\n");
exit(1);
return;
}
int main(int argc, char *argv[]) {
// Important variables to set! Here are the defaults:
Float boxsize = 400;
// The periodicity of the position-space cube. (overwritten if reading from file)
Float rescale = 1.0; // If left zero or negative, set rescale=boxsize
// The particles will be read from the unit cube, but then scaled by boxsize.
Float rmax = 200;
// The maximum radius of the largest bin.
Float rmin = 0;
// The minimum radius of the smallest bin.
int nside = 50;
// The grid size, which should be tuned to match boxsize and rmax.
// Don't forget to adjust this if changing boxsize!
int make_random = 0;
// If set, we'll just throw random periodic points instead of reading the file
int np = -1; // Will be number of particles in a random distribution,
// but gets overwritten if reading from a file.
int qbalance = 0, qinvert = 0;
const char default_fname[] = "sample.dat";
const char default_outstr[] = "sample";
char *fname = NULL;
char *outstr = NULL;
char *savename = NULL;
char *loadname = NULL;
// The periodicity of the position-space cuboid in 3D.
Float3 rect_boxsize = {boxsize,boxsize,boxsize}; // this is overwritten on particle read-in
Float cellsize;
STimer TotalTime, Prologue, Epilogue, MultipoleTime, IOTime;
// Detailed timings
STimer InfileReadTime, WeightsReadTime, GridTime, OutputTime;
TotalTime.Start();
Prologue.Start();
if (argc==1) usage();
int i=1;
while (i<argc) {
if (!strcmp(argv[i],"-boxsize")||!strcmp(argv[i],"-box")){
Float tmp_box = atof(argv[++i]);
rect_boxsize={tmp_box,tmp_box,tmp_box};
}
else if (!strcmp(argv[i],"-rescale")||!strcmp(argv[i],"-scale")) rescale = atof(argv[++i]);
else if (!strcmp(argv[i],"-rmax")||!strcmp(argv[i],"-max")) rmax = atof(argv[++i]);
else if (!strcmp(argv[i],"-rmin")||!strcmp(argv[i],"-min")) rmin = atof(argv[++i]);
else if (!strcmp(argv[i],"-nside")||!strcmp(argv[i],"-ngrid")||!strcmp(argv[i],"-grid")) nside = atoi(argv[++i]);
else if (!strcmp(argv[i],"-in")) fname = argv[++i];
else if (!strcmp(argv[i],"-outstr")) outstr = argv[++i];
else if (!strcmp(argv[i],"-save")||!strcmp(argv[i],"-store")) savename = argv[++i];
else if (!strcmp(argv[i],"-load")) loadname = argv[++i];
else if (!strcmp(argv[i],"-balance")) qbalance = 1;
else if (!strcmp(argv[i],"-invert")) qinvert = 1;
else if (!strcmp(argv[i],"-ran")||!strcmp(argv[i],"-np")) {
double tmp;
if (sscanf(argv[++i],"%lf", &tmp)!=1) {
fprintf(stderr, "Failed to read number in %s %s\n",
argv[i-1], argv[i]);
usage();
}
np = tmp;
make_random=1;
}
else if (!strcmp(argv[i],"-def")||!strcmp(argv[i],"-default")) { fname = NULL; }
#ifdef GPU
else if (!strcmp(argv[i],"-gpu")) _gpumode = atoi(argv[++i]);
else if (!strcmp(argv[i],"-float")) _gpufloat = true;
else if (!strcmp(argv[i],"-mixed")) _gpumixed = true;
else if (!strcmp(argv[i],"-global")) _shared = false;
else if (!strcmp(argv[i],"-mpkernel")) _gpump = atoi(argv[++i]);
else if (!strcmp(argv[i],"-2pcf")) _only2pcf = true;
#endif
else {
fprintf(stderr, "Don't recognize %s\n", argv[i]);
usage();
}
i++;
}
// Compute smallest and largest boxsizes
Float box_min = fmin(fmin(rect_boxsize.x,rect_boxsize.y),rect_boxsize.z);
Float box_max = fmax(fmax(rect_boxsize.x,rect_boxsize.y),rect_boxsize.z);
assert(i==argc); // For example, we might have omitted the last argument, causing disaster.
assert(box_min>0.0);
assert(rmax>0.0);
assert(rmin>=0.0);
assert(nside>0);
assert(nside<300); // Legal, but rather unlikely that we should use something this big!
if (rescale<0.0) rescale = box_max; // This would allow a unit cube to fill the periodic volume
if (rescale==0.0) rescale = 1; // no rescaling
if (fname==NULL) fname = (char *) default_fname; // No name was given
if (outstr==NULL) outstr = (char *) default_outstr; // No outstring was given
// Output for posterity
printf("\nBox Size = {%6.5e,%6.5e,%6.5e}\n", rect_boxsize.x,rect_boxsize.y,rect_boxsize.z);
printf("Grid = %d\n", nside);
printf("Minimum Radius = %6.3g\n", rmin);
printf("Maximum Radius = %6.3g\n", rmax);
Float gridsize = rmax/(box_max/nside);
printf("Radius in Grid Units = %6.3g\n", gridsize);
if (gridsize<1) printf("#\n# WARNING: grid appears inefficiently coarse\n#\n");
printf("Bins = %d\n", NBIN);
printf("Order = %d\n", ORDER);
#ifdef ALLPARITY
printf("Parity: All\n");
#else
printf("Parity: Even\n");
#endif
// Print which N-points are used and check ell-max
assert(ORDER<=MAXORDER); // Actually, this will run, but it would give silent zeros.
#if ORDER>MAXORDER
#error "ell-max (ORDER) exceeds maximum value for N<=4!"
#endif
#ifdef FOURPCF
printf("4PCF: Yes\n");
#else
printf("4PCF: No\n");
#endif
#ifdef FIVEPCF
assert(ORDER<=MAXORDER5);
#if ORDER>MAXORDER5
#error "ell-max (ORDER) exceeds maximum value for N=5!"
#endif
printf("5PCF: Yes\n");
#else
printf("5PCF: No\n");
#endif
#ifdef SIXPCF
assert(ORDER<=MAXORDER6);
#if ORDER>MAXORDER6
#error "ell-max (ORDER) exceeds maximum value for N=6!"
#endif
printf("6PCF: Yes\n");
#else
printf("6PCF: No\n");
#endif
printf("\n");
if (_gpumode > 0) nthreads = 1;
InfileReadTime.Start();
Particle *orig_p;
Float3 shift;
if (make_random) {
// If you want to just make random particles instead:
assert(np>0);
orig_p = make_particles(rect_boxsize, np);
cellsize = rect_boxsize.x/nside; // define size of cells
} else {
orig_p = read_particles(rescale, &np, fname);
assert(np>0);
// Update boxsize here
compute_bounding_box(orig_p,np,rect_boxsize,cellsize,rmax,shift,nside);
}
if (qinvert) invert_weights(orig_p, np);
if (qbalance) balance_weights(orig_p, np);
InfileReadTime.Stop();
// Compute the NPCF weights using the array of (squared) a_lm normalizations
WeightsReadTime.Start();
load_3pcf_coupling(); // load matrix of weights from file into the `threepcf_coupling` array
generate_3pcf_weights(); // generate the 3pcf weights for this specific LMAX, including normalization factors. They are stored in weight3pcf
#ifdef FOURPCF
load_4pcf_coupling(); // load matrix of weights from file into the `fourpcf_coupling` array
generate_4pcf_weights(); // generate the 4pcf weights for this specific LMAX, including normalization factors. They are stored in weight4pcf
#endif
#ifdef DISCONNECTED
generate_discon_weights(); // generate the disconnected weights for this specific LMAX, including normalizations. They are stored in weightdiscon1 and weightdiscon2
#endif
#ifdef FIVEPCF
load_5pcf_coupling(); // load matrix of weights from file into the `fivepcf_coupling` array
generate_5pcf_weights(); // generate the 5pcf weights for this specific LMAX, including normalization factors. They are stored in weight5pcf
#endif
#ifdef SIXPCF
load_6pcf_coupling(); // load matrix of weights from file into the `sixpcf_coupling` array
generate_6pcf_weights(); // generate the 6pcf weights for this specific LMAX, including normalization factors. They are stored in weight6pcf
#endif
WeightsReadTime.Stop();
GridTime.Start();
// Now ready to compute!
// Sort the particles into the grid.
Grid grid(orig_p, np, rect_boxsize, cellsize,shift);
printf("# Done gridding the particles\n");
printf("# %d particles in use, %d with positive weight\n", grid.np, grid.np_pos);
printf("# Weights: Positive particles sum to %f\n", grid.sumw_pos);
printf("# Negative particles sum to %f\n", grid.sumw_neg);
free(orig_p);
Float grid_density = (double)np/grid.nf;
printf("Average number of particles per grid cell = %6.2g\n", grid_density);
printf("Average number of particles within allowed radii shell = %6.2g\n",
np*4.0*M_PI/3.0*(pow(rmax,3.0)-pow(rmin,3.0))/(rect_boxsize.x*rect_boxsize.y*rect_boxsize.z));
if (grid_density<1) printf("#\n# WARNING: grid appears inefficiently fine.\n#\n");
smsave = smload = NULL;
if (loadname!=NULL) smload = new StoreMultipoles(grid.np_pos);
if (savename!=NULL) smsave = new StoreMultipoles(grid.np_pos);
IOTime.Start();
if (smload!=NULL) {
smload->load(loadname);
pairs[0].load(smload->xi0, smload->xi2);
// Put all of the previous work in thread 0
}
GridTime.Stop();
IOTime.Stop();
zero_power();
fflush(NULL);
#ifdef DISCONNECTED
// update some parameters
//for(int i=0;i<MAXTHREAD;i++) npcf[i].load_params(qbalance, qinvert);
for(int i=0;i<nthreads;i++) npcf[i].load_params(qbalance, qinvert);
#endif
Prologue.Stop();
// Everything above here takes negligible time. This line is nearly all of the work.
MultipoleTime.Start();
compute_multipoles(&grid, rmin, rmax);
printf("# Done counting the pairs\n");
MultipoleTime.Stop();
// Output the results
Epilogue.Start();
OutputTime.Start();
sum_power();
OutputTime.Stop();
//printf("\n# Binned weighted pair counts, monopole and quadrupole\n");
//pairs[0].report_pairs();
// Save the outputs
pairs[0].save_pairs(outstr, rmin, rmax);
npcf[0].save_power(outstr, rmin, rmax);
IOTime.Start();
if (smsave!=NULL) {
pairs[0].save(smsave->xi0, smsave->xi2);
smsave->save(savename);
}
IOTime.Stop();
npcf[0].report_timings();
if (smload!=NULL) delete smload;
if (smsave!=NULL) delete smsave;
Epilogue.Stop();
TotalTime.Stop();
printf("\n# Total Time: %4.1f s\n", TotalTime.Elapsed());
printf("# Prologue: %6.3f s (%4.1f%%)\n", Prologue.Elapsed(), Prologue.Elapsed()/TotalTime.Elapsed()*100.0);
printf("# Epilogue: %6.3f s (%4.1f%%)\n", Epilogue.Elapsed(), Epilogue.Elapsed()/TotalTime.Elapsed()*100.0);
printf("# IO Time: %6.3f s (%4.1f%%)\n", IOTime.Elapsed(), IOTime.Elapsed()/TotalTime.Elapsed()*100.0);
printf("# Pairs: %6.3f s (%4.1f%%)\n", MultipoleTime.Elapsed(), MultipoleTime.Elapsed()/TotalTime.Elapsed()*100.0);
// Detailed timing breakdown
printf("\n# Load Particles: %6.3f s (%4.1f%%)\n", InfileReadTime.Elapsed(), InfileReadTime.Elapsed()/TotalTime.Elapsed()*100.0);
printf("# Load Weights: %6.3f s (%4.1f%%)\n", WeightsReadTime.Elapsed(), WeightsReadTime.Elapsed()/TotalTime.Elapsed()*100.0);
printf("# Grid Allocation: %6.3f s (%4.1f%%)\n", GridTime.Elapsed(), GridTime.Elapsed()/TotalTime.Elapsed()*100.0);
printf("# NPCF Output: %6.3f s (%4.1f%%)\n", OutputTime.Elapsed(), OutputTime.Elapsed()/TotalTime.Elapsed()*100.0);
return 0;
}