-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrading_simulation.py
178 lines (140 loc) · 6.18 KB
/
trading_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 15 16:01:05 2019
@author: mschnaubelt
"""
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 19 10:56:38 2018
@author: mschnaubelt
"""
import logging
import time
import empyrical
import pandas as pd
import os
#import matplotlib
#matplotlib.use('PDF')
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
from backtest.backtester import Backtester
def run_backtest(predictions, backtest_config, out_path):
logging.info("Running backtest %s",
backtest_config['name']if 'name' in backtest_config else backtest_config)
t0 = time.time()
if 'backtest_subset' in backtest_config and \
backtest_config['backtest_subset'] is not None:
index_names = ['SP500TR', 'SP400TR', 'SP600TR'] \
if backtest_config['backtest_subset'] == 'SP1500' \
else [backtest_config['backtest_subset']]
predictions = predictions.loc[predictions.mkt_index.isin(index_names)]
share_costs = predictions.groupby('ticker_symbol').mkt_index.max().apply(lambda x:
backtest_config['market_segment_commission'][x]).to_dict()
backtest_config['commission_dict'] = share_costs
backtester = Backtester(backtest_config)
backtester.run(1E9, predictions)
result = backtester.get_results()
stats = backtester.get_performance_stats()
trans = backtester.get_transactions()
#result['daily_r'] = (result['pnl'] / result['cumulated_used_cash']).fillna(0)
#result['cash_loadfactor'] = result['cumulated_used_cash'] / result['daily_start_cash']
export_result = result.copy()
for c in ['period_open', 'period_close']:
export_result[c] = export_result[c].apply(str)
export_result.to_excel(out_path + '/results.xlsx')
result.drop(['orders', 'transactions'], axis = 1, inplace = True)
result.to_hdf(out_path + '/results.hdf', 'results', complevel = 9, complib = 'bzip2')
trans['dt'] = trans['dt'].apply(str)
trans.to_excel(out_path + '/transactions.xlsx')
fig = plt.figure(figsize = (25, 8))
ax1 = fig.subplots(1, 1)
ax1.plot(result.returns.cumsum() + 1)
ax1.grid(True)
title = os.path.split(out_path)[1]
fig.suptitle(title)
fig.tight_layout(rect = [0, 0.03, 1, 0.95])
fig.savefig(out_path + '/cumsum.pdf')
plt.close(fig)
dt = time.time() - t0
logging.info("Runtime: %d seconds", dt)
reg = smf.ols('returns ~ 1', data = result).fit(
cov_type = 'HAC', cov_kwds = {'maxlags': 10})
result_dict = {
'PnL':
result['pnl'].sum(),
'Mean daily return':
result['returns'].mean(),
'Std daily return':
result['returns'].std(),
'Mean daily standard error (NW)':
reg.HC0_se[0],
'Mean daily t-statistic (NW)':
reg.params[0] / reg.HC0_se[0],
'Median daily return':
result['returns'].median(),
'25% daily return':
result['returns'].quantile(0.25),
'75% daily return':
result['returns'].quantile(0.75),
'Max daily return':
result['returns'].max(),
'Min daily return':
result['returns'].min(),
'Skewness':
result['returns'].skew(),
'Kurtosis':
result['returns'].kurtosis(),
'Max leverage':
result.max_leverage.max(),
'hist. VaR 1%':
empyrical.value_at_risk(result['returns'], 0.01),
'hist. CVaR 1%':
empyrical.conditional_value_at_risk(result['returns'], 0.01),
'hist. VaR 5%':
empyrical.value_at_risk(result['returns'], 0.05),
'hist. CVaR 5%':
empyrical.conditional_value_at_risk(result['returns'], 0.05),
'share with return >= 0':
(result['returns'] >= 0.0).mean(),
'runtime':
dt,
# 'Mean cash loadfactor':
#result.cash_loadfactor.mean(),
# 'days with trades':
#(result.cash_loadfactor > 0).sum()
}
for y in [2014, 2015, 2016, 2017, 2018]:
f = result.index.year == y
result_dict.update({
'Annual return %d' % y:
empyrical.annual_return(result[f]['returns']),
'Sharpe ratio %d' % y:
empyrical.sharpe_ratio(result[f]['returns'])
})
result_dict.update({k: str(v) for k, v in backtest_config.items()})
result_dict.update(stats.to_dict())
pd.Series(result_dict).to_hdf(out_path + '/stats.hdf', 'stats')
return result_dict, result
def save_backtest_results(context, results):
result_df = pd.DataFrame(results)
cols = ['backend','name','stock_commission','market_commission',
'bin_period','trade_period','prediction_file',
'args','runtime','PnL',
'Sharpe ratio OCU', 'Annual return OCU',
'Mean cash loadfactor', 'days with trades',
'Annual return','Annual volatility','Sharpe ratio','Calmar ratio',
'Mean daily return','Median daily return',
'Max daily return','Min daily return',
'Annual return 2014', 'Sharpe ratio 2014',
'Annual return 2015', 'Sharpe ratio 2015',
'Cumulative returns','Daily value at risk','Kurtosis','Max drawdown',
'Skew','Sortino ratio','Stability','Tail ratio',
'Mean trade return','Trade roundtrips','Mean SPY return',
'Mean long SPY return', 'Mean short SPY return',
'Std SPY return','Mean long trade return','Trade long roundtrips',
'Mean short trade return','Trade short roundtrips']
result_df = result_df[cols]
result_df.to_excel(context.outputdir + "results.xlsx")
del result_df