-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodified_learning_model.py
51 lines (35 loc) · 1.43 KB
/
modified_learning_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def run_model(all_data, job, job_dir=None):
index_names = ['SP500TR', 'SP400TR', 'SP600TR'] if job['train_subset'] == 'SP1500' \
else [job['train_subset']]
if job['train_subset'] is not None:
data = all_data.loc[all_data.mkt_index.isin(index_names)].copy()
else:
data = all_data
data = data.sort_values('final_datetime')
model_base = job['model']
is_regr = is_regressor(model_base)
returns = all_data[job['train_target']]
train_target = returns if is_regr else (returns > 0.0)*1.0
return_target = all_data[job['return_target']]
feature_data = all_data[job['features']]
all_results = []
split_results = []
trained_models = []
trained_X_data = []
trained_y_return = []
if not is_regr:
metrics = {'mcc': matthews_corrcoef, 'bacc': balanced_accuracy_score}
else:
metrics = {'r2': explained_variance_score, 'mse': mean_squared_error,
'bacc': directional_bacc}
val = job['validator']
print(val)
for i, (train_index, test_index, val_index) in enumerate(val.split(data)):
# ... [rest of the loop code]
all_results.append(result)
split_results.append(split_result)
if not all_results:
return "No results to process", {}
results = pd.concat(all_results)
# ... [rest of the code after the loop]
return results, job_results