forked from mpraski/clusters
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdbscan_test.go
72 lines (68 loc) · 1.33 KB
/
dbscan_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
package clusters
import (
"reflect"
"testing"
)
func TestDBSCANCluster(t *testing.T) {
tests := []struct {
MinPts int
Eps float64
Points [][]float64
Expected []int
}{
{
MinPts: 1,
Eps: 1,
Points: [][]float64{{1}},
Expected: []int{1},
},
{
MinPts: 1,
Eps: 1,
Points: [][]float64{{1}, {1.5}},
Expected: []int{1, 1},
},
{
MinPts: 1,
Eps: 1,
Points: [][]float64{{1}, {1}},
Expected: []int{1, 1},
},
{
MinPts: 1,
Eps: 1,
Points: [][]float64{{1}, {1}, {1}},
Expected: []int{1, 1, 1},
},
{
MinPts: 1,
Eps: 1,
Points: [][]float64{{1}, {1.5}, {2}},
Expected: []int{1, 1, 1},
},
{
MinPts: 1,
Eps: 1,
Points: [][]float64{{1}, {1.5}, {3}},
Expected: []int{1, 1, 2},
},
{
MinPts: 2,
Eps: 1,
Points: [][]float64{{1}, {3}},
Expected: []int{-1, -1},
},
}
for _, test := range tests {
c, e := DBSCAN(test.MinPts, test.Eps, 0, EuclideanDistance)
if e != nil {
t.Errorf("Error initializing kmeans clusterer: %s\n", e.Error())
}
if e = c.Learn(test.Points); e != nil {
t.Errorf("Error learning data: %s\n", e.Error())
}
if !reflect.DeepEqual(c.Guesses(), test.Expected) {
t.Errorf("guesses does not match: %d vs %d\n", c.Guesses(), test.Expected)
}
}
}