-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysis.py
1028 lines (786 loc) · 28.4 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from algorithms import *
import time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pandas.tools.plotting import scatter_matrix
from scipy.stats import ttest_ind
from sklearn.cross_validation import train_test_split
from sklearn import svm
from sklearn import tree
from sklearn.linear_model import LogisticRegression
from sklearn.mixture import GMM
from sklearn.cluster import KMeans
#
# Get started!
#
# column names
col_names = ['ts','xa','ya','za','act']
# xyz motion columns
xyz = ['xa','ya','za']
# the classifiers to be used and their corresponding parameter set for GridSearchCV
classifier_sets = [
(tree.DecisionTreeClassifier(class_weight='balanced', max_depth=5, min_samples_leaf=5),
{'max_features': [3,4,5,6,7,8],
'max_depth': [2,4,6,8],
'min_samples_leaf': [3,4,5,6,7,8,9]}),
(svm.SVC(gamma=1, class_weight='balanced'),
{'kernel': ('linear', 'rbf', 'sigmoid'),
'C': [0.1, 1., 10., 100.],
'gamma': [0.001, 0.1, 1., 10., 100.]}),
(LogisticRegression(class_weight='balanced'),
{'C': [.001,.01,.1,1,10,100,1000]})]
def analysis_first(Dat):
# First analysis as sanity check
#Dat = gather_data(data_files)
Dat = Dat.query('(act == 4) | (act == 3)')
X_train, y_train, X_test, y_test = split_data(
Dat, X_coi=['pk0', 'pk1', 'pk2'], y_coi=['act'])
clf = svm.SVC()
clf.fit(X_train, np.ravel(y_train))
#print clf
print clf.score(X_test, y_test)
return clf
def analysis_by_nfft(data_files, clf):
ffts = [128, 192, 256, 384, 512]
ffts = [128, 256, 512]
xcoi = ['pk0', 'pk1', 'pk2']
#clf = svm.SVC()
results = np.zeros((len(ffts),4))
for i, sig in enumerate(['xa', 'ya', 'za', 'mag']):
print "Signal", sig
for j, fft_ in enumerate(ffts):
print "FFT size:", fft_
Dat = gather_data(data_files, sig_comp=sig, nfft=fft_)
X_train, y_train, X_test, y_test = split_data(Dat, actions=[3,4],
test_ratio=0.1, X_coi=xcoi, y_coi=['act'])
y_train = np.ravel(y_train)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
f1 = f1_score(y_pred, y_test, pos_label=4)
print "F1 score:", f1
results[j][i] = f1
print
return results
def analysis_walking_identification(clf, Dat, subjs=[1,2]):
#xcoi = ['pk0', 'pk1', 'pk2']
xcoi = [i for i in Dat.columns if i not in ['act', 'subj']]
for lo in range(1,max(subjs)+1):
print 'leave out', lo
# get train/test data
X, y, _, _ = split_data(Dat, subjects=subjs, actions=[4],
test_ratio=0.0, X_coi=xcoi, y_coi=['subj'])
#print len(y_train), len(y_test)
y = np.ravel(y)
#y_test = np.ravel(y_test)
#y = y[y!=1]
# revise y_labels for Leave One Out Analysis?
y[y != lo] = 0
#y_test[y_test != lo] = 0
clf.fit(X, y)
scores = cross_val_score(clf, X, y, cv=3)
print scores.mean()
#plt.scatter(X[])
return X, y
def learning_curve_analysis(Dat, acts=[3,4]):
#acts = [2,3,4,5]
xcoi = [i for i in Dat.columns if i not in ['act', 'subj']]
X, y,_, _= split_data(Dat, test_ratio=0., actions=acts,
X_coi=xcoi,
y_coi=['act'])#, 'subj'])
y = np.ravel(y)
plot_learning_curve(svm.SVC(), "SVC Learning Curve", X, y,
train_sizes=np.linspace(.2, 1., 5))
plt.show()
def analysis_svm(X_train, y_train, X_test, y_test):
clf = svm.SVC()
clf.fit(X_train, y_train)
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):#[50,100,150,200,300,400])
"""
Generate a simple plot of the test and traning learning curve.
Parameters
----------
estimator : object type that implements the "fit" and "predict" methods
An object of that type which is cloned for each validation.
title : string
Title for the chart.
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape (n_samples) or (n_samples, n_features), optional
Target relative to X for classification or regression;
None for unsupervised learning.
ylim : tuple, shape (ymin, ymax), optional
Defines minimum and maximum yvalues plotted.
cv : integer, cross-validation generator, optional
If an integer is passed, it is the number of folds (defaults to 3).
Specific cross-validation objects can be passed, see
sklearn.cross_validation module for the list of possible objects
n_jobs : integer, optional
Number of jobs to run in parallel (default 1).
"""
print estimator
plt.figure()
plt.title(title)
if ylim is not None:
plt.ylim(*ylim)
plt.xlabel("Training examples")
plt.ylabel("Score")
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
plt.grid()
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color="r")
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1, color="g")
plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
label="Cross-validation score")
plt.legend(loc="best")
return plt
def split_Xy(X, y, subjects=None, actions=None, test_ratio=0.3, random_state=3):
y_items = set(y.tolist())
#if subjects is None:
# subjects = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
#if X_coi == [] or y_coi == '':
# print "Specify columns of interest"
# return 0
#X = Dat[X_coi]
#y = Dat[y_coi]
#X_train, X_test, y_train, y_test = train_test_split(
# X, y, test_size=test_ratio, random_state=random_state)
#X_train, y_train = pd.DataFrame(), pd.DataFrame()
#X_test, y_test = pd.DataFrame(), pd.DataFrame()
X_train, y_train = np.empty([0,X.shape[1]]), np.empty([1,0])
X_test, y_test = np.empty([0,X.shape[1]]), np.empty([1,0])
for yi in y_items:
#d = Dat[(y==si)]
i_mask = y==yi
n_rows = len(y[i_mask])
n_test = int(n_rows*test_ratio)
n_train = n_rows - n_test
#print n_rows,
Xi = X[i_mask]
yi = y[i_mask]
X_train = np.vstack((X_train, Xi[:][:n_train]))
X_test = np.vstack((X_test, Xi[:][n_train:n_rows]))
y_train = np.append(y_train, yi[:n_train])
y_test = np.append(y_test, yi[n_train:n_rows])
#print len(X_train), len(X_test)
#return X, y
return X_train, y_train.astype(int), X_test, y_test.astype(int)
def plot_confusion_matrix(cm, target_names, title='Confusion matrix', cmap=plt.cm.Blues):
#target_names = ['Stairs', 'Standing', 'Walking', 'Talking']
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
def analysis_classify_activity(clf, data, sig_comp='ya'):
subj_n = range(1,16)
activities_list = ['Working at Computer', 'Stairs', 'Standing', 'Walking',
'Stairs', 'Walking and Talking', 'Talking while Standing']
act_n = [3,4]
act_n = [1,3,4]
activities = [activities_list[i-1] for i in act_n]
#print data.head()
if 1:
# time domain features
if type(sig_comp) == 'str':
X, y = np.empty([0,12]), np.empty([1,0])
else:#if type(sig_comp) == 'list':
X, y = np.empty([0,12*len(sig_comp)]), np.empty([1,0])
'''print "Extracting time features..."
t = time.time()
for i in act_n:
d = data[data.act.isin([i])]
#print d.head()
f = extract_windowed_time_features(
d[sig_comp].as_matrix(), d.ts.as_matrix(), 2, 50)
#f = pd.DataFrame(f, columns=)
#print i, f.shape[0]
act_col = [i] * f.shape[0]
#print subj_col
#f.subj = subj_col
y = np.append(y, act_col)
X = np.vstack((X, f))
#feats_time.append(f)
y = y.astype(int)
print "Time:", time.time() - t
'''
X, y = make_time_features(data[data.subj==1], ycol='act', yrng=act_n)
if type(sig_comp) == 'list':
print 'pca reduction...'
pca = PCA(n_components=10)
#pca.fit(X)
X = pca.fit_transform(X)
else:
# frequency domain features
print "Extracting frequency features..."
t = time.time()
X, y = np.empty([0,3]), np.empty([1,0])
for i in act_n:
d = data[data.subj.isin([i])]
f = extract_spec_features(d[sig_comp].as_matrix(),
nFFT=256, n_peaks=3, delta=3)
#f['subj'] = [i] * f.shape[0]
#feats_freq.append(f)
act_col = [i] * f.shape[0]
y = np.append(y, act_col)
X = np.vstack((X, f))
y = y.astype(int)
print "Time:", time.time() - t
#scores = cross_val_score(clf, X_time, y_time)
#print scores
X_train, y_train, X_test, y_test = split_Xy(X, y, test_ratio=.3)
#print y.shape
#sss = train_test_split(X, y,
# train_size=.3, stratify=y)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
if 1:
cm = confusion_matrix(y_test, y_pred)
cm_normalized = cm.astype('float') / cm.sum(axis=1)[:,np.newaxis]
print('Normalized confusion matrix')
print(cm_normalized)
plt.figure()
plot_confusion_matrix(cm_normalized, activities, title='Normalized confusion matrix')
plt.show()
return clf
def analysis_compare_time_freq(clf, data):
# to be deleted
subj_n = range(1,16)
if 0:
X_time, y_time = make_time_features(data, win_size=2, delta=40)
pca_time = PCA()
X_time_pca = pca_time.fit_transform(X_time)
plt.figure()
plt.title('PCA time features')
plt.plot(np.cumsum(pca_time.explained_variance_ratio_))
X_freq, y_freq = make_freq_features(data, nFFT=256, n_peaks=5, delta=50)
pca_freq = PCA()
X_freq_pca = pca_freq.fit_transform(X_freq)
plt.figure()
plt.title('PCA freq features')
plt.plot(np.cumsum(pca_freq.explained_variance_ratio_))
#return (X_time,y_time), (X_freq, y_freq)
if 0:
plt.figure()
plt.plot(lo_time, label='Time Features')
plt.plot(lo_freq, label='Frequency Features')
plt.legend()
plt.show()
#return (X_time, y_time), (X_freq, y_freq)
return (X_freq, y_freq)
def analysis_classify_walkers_louo(clf, X, y, parms={}):
# list of scores for each iteration of user verification
print 'LOUO'
lo_scores = []
for lo in range(1,max(y)+1):
# revise y_labels for Leave One Out Analysis
yi = np.copy(y)
yi[yi != lo] = 0
yi[yi == lo] = 1
#print yi.mean()
# make train/test sets
X_train, X_test, y_train, y_test = train_test_split(
X, yi, train_size=.7, random_state=3)
clf.set_params(**parms)
#print y_train.mean(), y_test.mean()
# fit classifier and score classifier
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
lo_scores.append(score)
print clf
print 'train:', X_train.shape
print 'test:', X_test.shape
scores = np.array(lo_scores)
return scores #.mean(), scores.std()
def plot_as_pca(X,y):
pca = PCA(n_components=5)
Xt = pca.fit_transform(X)
import six
from matplotlib import colors
colors_ = list(six.iteritems(colors.cnames))
if 0:#for i in range(1,3):
#print i,
Xi = Xt[np.ravel(y==i)]
Xc = np.ravel(y[np.ravel(y==i)])
#print Xc
#print Xi.shape
#plt.scatter(Xi[:,0], Xi[:,1], c=Xc)#[i]*Xi[0].size)
plt.scatter(Xi[:,4], Xi[:,2], c=colors_[i])#[i]*Xi[0].size)
plt.show()
Xtpd = pd.DataFrame(Xt, columns=['PCA '+str(i) for i in range(5)])
#Xtpd['y'] = y
scatter_matrix(Xtpd, alpha=0.2, figsize=(6, 6), diagonal='kde')
return Xtpd
def plot_windowed_time_features(data_file, n, sig='ya', win_size=2):
dat = load_data(data_file[n:n+1], act=4)
r = extract_windowed_time_features(
dat.ya.as_matrix(), dat.ts.as_matrix(), win_size, 40)
plt.plot(r)
plt.show()
def make_freq_features(data, nFFT=256, n_peaks=6, delta=4,
yrng=range(1,16), ycol='subj'):
#subj_n = range(1,16)#[1]
sig_comps = ['xa', 'ya', 'za']
#n_sig = len(sig_comps)
# frequency domain features
print "Extracting frequency features..."
t = time.time()
#X_freq, y_freq = np.empty([0,n_peaks]), np.empty([1,0])
#X_freq, y_freq = np.empty([0,n_peaks*n_sig]), np.empty([1,0])
X = pd.DataFrame()
y = np.array([])
for i in yrng:
dat = data[data[ycol].isin([i])]
f = get_spec_features(dat, sig_comps,
nFFT=nFFT, n_peaks=n_peaks, delta=delta)
y_col = pd.DataFrame({'subj': [i] * f.shape[0]})
y = np.append(y, y_col)#, ignore_index=True)
X = X.append(f, ignore_index=True)
y = y.astype(int)
print "Time:", time.time() - t
print 'Feature Matrix:', X.shape[0], 'rows,', X.shape[1], 'columns.'
return X, y
def make_time_features(data, win_size=5, delta=40, yrng=range(1,16), ycol='subj', typ='amp', jrk=1):
#subj_n = range(1,16)#[1]
sig_comps = ['xa', 'ya', 'za']
#n_sig = len(sig_comps)
X = pd.DataFrame()
y = np.array([])
print "Extracting time features..."
t = time.time()
for i in yrng: #subj_n:
d = data[data[ycol].isin([i])]
f = extract_windowed_time_features(
d[sig_comps], d.ts.as_matrix(), win_size, delta, typ=typ, jrk=jrk)
y_col = pd.DataFrame({ycol: [i] * f.shape[0]})
y = np.append(y, y_col) #, ignore_index=True)
X = X.append(f, ignore_index=True)
y = y.astype(int)
print "Time:", time.time() - t
print 'Feature Matrix:', X.shape[0], 'rows,', X.shape[1], 'columns.'
return X, y
'''*****************************************************************************
Analyses
*****************************************************************************'''
def analysis_clustering(data, n_clust=2):
#n_clust = 2
# make features
X, y = make_freq_features(data, delta=40)
#X, y = make_time_features(data, delta=40)
# pca reduction
pca = PCA(n_components=18)
Xt = pca.fit_transform(X)
if 0:
plt.figure()
plt.title('PCA freq features')
plt.plot(range(1,19), np.cumsum(pca.explained_variance_ratio_), 'o-')
plt.xlim(1,18)
plt.show()
pca = PCA(n_components=18)
Xt = pca.fit_transform(X)
max_pct = []
clusts = range(3,16)
for n_clust in clusts:
# cluster into groups
#clf = GMM(n_components=n_clust, covariance_type='full')
clf = KMeans(n_clusters=n_clust)
clf.fit(Xt)
y_pred = clf.predict(Xt)
# look at groups
counts = []
for c in range(n_clust):
inds = np.where(y_pred==c)
res = np.histogram(y[inds], bins=range(1,17))
#print res[0]
counts.append(res[0])
#for i in range(n_clust):
counts_tot = np.histogram(y, bins=range(1,17))[0]
counts_tot = [float(i) for i in counts_tot]
#pcts = [i/counts_tot for i in counts]
pcts = [i/counts_tot*(a+2) for a,i in enumerate(counts)]
#print pcts
max_pct.append(np.max(pcts, 0))
pct_dat = np.array(max_pct)
#pct_dat = np.array(pcts) #what should this do?
plt.figure()
plt.plot(pct_dat.T)
#print pct_dat.shape
#print
avgs = pct_dat.mean(axis=1)
plt.figure()
#print clusts
#print avgs
plt.plot(clusts, avgs)
plt.show()
return counts, pct_dat
def analysis_logistic_regression(data):
walking_data = data[data.act==4]
#walking_data.reset_index(inplace=True)
#X1 = X[:]
scores = []
for a in range(1,15):
#dat = walking_data[walking_data.subj in [a,b]]
X, y = make_freq_features(walking_data, delta=4)
yi = np.copy(y)
yi[yi != a] = 0
Xi = X.iloc[:, 1:2]
print Xi.shape
#yi[yi == a+1] = 1
X_train, X_test, y_train, y_test = train_test_split(Xi, yi,
train_size=.1, random_state=3)
clf = LogisticRegression()
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
print score
scores.append(score)
print np.mean(scores)
Xy = pd.DataFrame([Xi, yi])
def analysis_tree_win_size(data):
walking_data = data[data.act==4]
for ws in [3,4,5,6,7,10]:
print 'Window Size:', ws
X, y = make_time_features(walking_data, win_size=ws, jrk=1)
print X.shape
clf = tree.DecisionTreeClassifier()
print 'Leave One User Out.'
mn, sd = analysis_classify_walkers_louo(clf, X, y)
print 'mean',mn, 'std', sd
print
print
def analysis_tree(X,y):
clf = tree.DecisionTreeClassifier(min_samples_leaf=10)
print X.shape
#scores = cross_val_score(clf, X, y)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=.3, random_state=3)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
print score
print clf
#print
#print 'Leave One User Out.'
#mn, sd = analysis_classify_walkers_louo(clf, X, y)
#print 'mean',mn, 'std', sd
return clf
def run_analyses(X, y):
clf = tree.DecisionTreeClassifier(class_weight='balanced', max_depth=5, min_samples_leaf=5)#, min_samples_split=20)#, max_features=4)
parameters = {
'max_features': [3,4,5,6,7,8],
'max_depth': [5,10,15,20],
'min_samples_leaf': [3,4,5,6,7,8,9]}
analysis_grid_tree(clf, parameters, X, y)
print
print
clf = svm.SVC(gamma=1, class_weight='balanced')
parameters = {
'kernel': ('linear', 'rbf', 'sigmoid'),
'C': [0.1, 1., 10., 100.],
'gamma': [0.001, 0.1, 1., 10., 100.]}
#clf = analysis_grid_tree(clf, parameters, X, y)
return clf
def analysis_grid_and_verify(clf, parameters, X, y):
"""
"""
print 'data:', X.shape
yi = np.copy(y)
# revise y_labels for Leave One Out Analysis
yi[yi != 1] = 0
#y_test[y_test != lo] = 0
X_train, X_test, y_train, y_test = train_test_split(
X, yi, train_size=.6, random_state=3)#, stratify=yi)
print 'train:', X_train.shape
print 'test:', X_test.shape
# Fit
t = time.time()
clf.fit(X_train, y_train)
print 'Fit time:', time.time() - t
# Predict
t = time.time()
clf.predict(X_test)
print 'Predict time:', time.time() - t
# Score
score = clf.score(X_test, y_test)
print 'Initial Classifier score:', score
print 'untuned louo'
scores = analysis_classify_walkers_louo(clf, X, y)
print scores
print scores.mean(), scores.std()
print '* Grid Search *'
grid = grid_search.GridSearchCV(clf, parameters)
# Fit tuned
t = time.time()
grid.fit(X, yi)
print 'Fit time:', time.time() - t
# Predict tuned
t = time.time()
grid.predict(X_test)
print 'Predict time', time.time() - t
# Score tuned
print 'grid search'
print grid.best_score_
print grid.best_estimator_
print
print 'tuned louo'
scores = analysis_classify_walkers_louo(clf, X, y, parms=grid.best_params_)
print scores
print scores.mean(), scores.std()
plt.figure()
plt.bar(range(1,len(scores)+1),scores, align='center')
plt.ylim((.8,1))
plt.xlabel('Subject')
plt.ylabel('F1 Score')
plt.xticks(np.arange(1, 16))
plt.show()
return clf #scores
def analysis_by_features(Xf, yf):
pt = 1
clf = tree.DecisionTreeClassifier(class_weight='balanced', min_samples_leaf=10)#, min_samples_split=20)#, max_features=4)
parameters = {
'max_features':[3,4,5,6,7,8],
#'max_depth':[None, 2,3,4],
'min_samples_leaf':[1,2,3,4,5,10],
'min_samples_split':[2,3,4,5,10,15,20]}
parameters_pca = {
'max_features':[3,4,5],
#'max_depth':[None, 2,3,4],
'min_samples_leaf':[1,2,3,4,5,10],
'min_samples_split':[2,3,4,5,10,15,20]}
#datawalk = data[data.act==4]
#Xf, yf = make_freq_features(datawalk, delta=4)
print ''
print ' * GridTreee Freq factors'
#scores_f = analysis_grid_tree(clf, parameters, Xf, yf)
#print 'T-test comparing validation using time and frequency features'
#print ttest_ind(scores_f, scores_t)
#print scores_f, scores_t
#return scores_f, scores_t
# PCA freq
print ''
print ' * Freq PCA'
pca = PCA(n_components=36)
Xfp = pca.fit_transform(Xf)
print Xfp.shape
print parameters_pca
clf = tree.DecisionTreeClassifier(class_weight='balanced', min_samples_leaf=10)#, min_samples_split=20)#, max_features=4)
scores_fpca = analysis_grid_tree(clf, parameters_pca, Xfp, yf)
if pt:
plt.figure()
plt.title('PCA Time features')
plt.plot(range(36), np.cumsum(pca.explained_variance_ratio_), 'o-')
plt.xlim(1,36)
plt.show()
def analysis_time(Xt, yt):
# Time Features
#Xt, yt = make_time_features(datawalk, win_size=4.923077, delta=40)
print ''
print ' * GridTreee Time factors'
scores_t = analysis_grid_tree(clf, parameters, Xt, yt)
# PCA time
pca = PCA(n_components=5)
Xtp = pca.fit_transform(Xt)
scores_tpca = analysis_grid_tree(clf, parameters_pca, Xtp, yt)
if pt:
plt.figure()
plt.title('PCA time features')
plt.plot(range(1,37), np.cumsum(pca.explained_variance_ratio_), 'o-')
plt.xlim(1,18)
plt.show()
# PCA combinded
Xall = np.hstack((Xf, Xt))
print ''
print ''
print 'combined features', Xall.shape
scores_a = analysis_grid_tree(clf, parameters, Xall, yt) # labels are same
pca = PCA(n_components=54)
Xallp = pca.fit_transform(Xall)
if pt:
plt.figure()
plt.title('PCA freq and time features')
plt.plot(range(1,55), np.cumsum(pca.explained_variance_ratio_), 'o-')
plt.xlim(1,54)
plt.show()
pca = PCA(n_components=5)
Xallp = pca.fit_transform(Xall)
print ''
print ' * GridTreee combined factors'
scores_apca = analysis_grid_tree(clf, parameters_pca, Xallp, yt) # labels are same
print "scores freq"
print scores_f
print "scores time"
print scores_t
print "scores all"
print scores_a
p = pd.DataFrame(Xallp, columns=['PCA '+str(i) for i in range(5)])
#p['y'] = y
#print p.head()
p.iloc[:,:5].hist(layout=(1,5), figsize=(9,3))
plt.figure()
scatter_matrix(p, alpha=0.2, figsize=(6, 6), diagonal='kde')
plt.show()
def analysis_freq_tree(data):
walking_data = data[data.act==4]
clf = tree.DecisionTreeClassifier()
X, y = make_freq_features(walking_data)
print 'Leave One User Out.'
scores = analysis_classify_walkers_louo(clf, X, y)
print 'mean',mn, 'std', sd
''' activity classification'''
def analysis_activity_time_tree(data):
user_data = data[data.subj==4]
clf = tree.DecisionTreeClassifier()
X, y = make_time_features(user_data, ycol=act, yrng=[2,4,6])
print 'Leave One User Out.'
mn, sd = analysis_classify_walkers_louo(clf, X, y)
print 'mean',mn, 'std', sd
X, y = make
def analysis_activity_freq_tree(data):
walking_data = data[data.act==4]
clf = tree.DecisionTreeClassifier()
X, y = make_freq_features(walking_data)
print 'Leave One User Out.'
mn, sd = analysis_classify_walkers_louo(clf, X, y)
print 'mean',mn, 'std', sd
'''
Plots
'''
def time_domain_viz(data_files):
subj = [1,5,8]
t1,t2 = 520,1040
dat = load_file(data_files[8], act=4)
x = dat.ya[t1:t2]
ts = dat.ts[t1:t2].as_matrix()
r = calculate_ts_diffs(x, ts, delta=40, viz=1)
def exploratory_visualization(data_files):
dat = load_file(data_files[0], act=4)
dat.ts = dat.ts-min(dat.ts)
#x = data.ya.as_matrix()
if 0:
#dat = data[data.act==4]
plt.figure(figsize=(12,6))
ax = plt.subplot(2,1,1)
plt.plot(dat.ts, dat.ya, 'k')
#pltsegs(ax, get_activity_segments(dat))
ax.set_xlim([0, dat.ts.max()])
plt.ylabel('Amplitude')
ax = plt.subplot(2,1,2)
plt.specgram(dat.ya, Fs=52., NFFT=256, noverlap=None)
#pltsegs(ax, get_activity_segments(dat), labs=0)
ax.set_ylim([0,26])
ax.set_xlim([0, dat.ts.max()])
plt.ylabel('Frequency')
plt.xlabel('Time (s)')
plt.tight_layout()
plt.show()
acc_3a(dat[2000:2520])
plt.show()
def show_outliers(data_files):
#using raw data
datawalk = load_data(data_files, act=4, use_fix=False)
#print datawalk.head()
X, y = make_freq_features(datawalk, delta=40)
pca = PCA(n_components=5)
Xt = pca.fit_transform(X)
p = pd.DataFrame(Xt)
p['y'] = y
#print p.head()
p.iloc[:,:5].hist(layout=(1,5), figsize=(9,3))
# using fixed activity labels
datawalk = load_data(data_files, act=4, use_fix=True)
#print datawalk.head()
X, y = make_freq_features(datawalk, delta=40)
pca = PCA(n_components=5)
Xt = pca.fit_transform(X)
p = pd.DataFrame(Xt)
p['y'] = y
#print p.head()
p.iloc[:,:5].hist(layout=(1,5), figsize=(9,3))
plt.show()
return p
def show_misalignment(data_files):
# pre alignment fix
dat = load_file(data_files[6], use_fix=False)
dat1 = dat[500*52:1501*52]
dat1 = dat1.reset_index(drop=True)
ns = dat1.shape[0]
ts = np.linspace(0, ns/52., num=ns)
plt.figure(figsize=(12,6))
ax1 = plt.subplot(111)
plt.plot(ts, dat1.xa, 'k')
plt.title('Raw Acceleration Data')
plt.ylabel('Acceleration')
plt.xlabel('Time (s)')
segs = get_activity_segments(dat1)
pltsegs(ax1, segs)
# use fixed activity labels
dat = load_file(data_files[6])
dat1 = dat[500*52:1501*52]
dat1 = dat1.reset_index(drop=True)
ns = dat1.shape[0]
ts = np.linspace(0, ns/52., num=ns)
plt.figure(figsize=(12,6))
ax2 = plt.subplot(111)
plt.plot(ts, dat1.xa, 'k')
plt.title('Raw Acceleration Data with Fixed Labels')
plt.ylabel('Acceleration')
plt.xlabel('Time (s)')
segs = get_activity_segments(dat1)
pltsegs(ax2, segs)
# show aperiodic section
dat1 = dat[46000:47000]
dat1 = dat1.reset_index(drop=True)
ns = dat1.shape[0]
ts = np.linspace(0, ns/52., num=ns)
plt.figure(figsize=(12,6))
ax = plt.subplot(111)
plt.plot(ts, dat1.xa, 'k')
plt.title('Raw Acceleration Data')
plt.ylabel('Acceleration')
plt.xlabel('Time (s)')
segs = get_activity_segments(dat1)
pltsegs(ax, segs)
plt.show()
def show_features_by_subject(data_files=data_files):
datawalk = load_data(data_files, act=4, use_fix=False)
#print datawalk.head()
X, y = make_freq_features(datawalk, delta=40)
pca = PCA(n_components=5)
Xt = pca.fit_transform(X)
p = pd.DataFrame(Xt)
p['Subject'] = y
axes = p.boxplot(by='Subject', layout=(1,5))
for i in range(5):