forked from PyDMD/PyDMD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtutorial-6-hodmd.py
59 lines (46 loc) · 1.98 KB
/
tutorial-6-hodmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import matplotlib.pyplot as plt
import numpy as np
import time
from pydmd import HODMD
def myfunc(x):
return np.cos(x)*np.sin(np.cos(x)) + np.cos(x*.2)
x = np.linspace(0, 10, 64)
y = myfunc(x)
snapshots = y
plt.plot(x, snapshots, '.')
plt.show()
hodmd = HODMD(svd_rank=0, exact=True, opt=True, d=30).fit(snapshots)
hodmd.reconstructed_data.shape
hodmd.plot_eigs()
hodmd.original_time['dt'] = hodmd.dmd_time['dt'] = x[1] - x[0]
hodmd.original_time['t0'] = hodmd.dmd_time['t0'] = x[0]
hodmd.original_time['tend'] = hodmd.dmd_time['tend'] = x[-1]
plt.plot(hodmd.original_timesteps, snapshots, '.', label='snapshots')
plt.plot(hodmd.original_timesteps, y, '-', label='original function')
plt.plot(hodmd.dmd_timesteps, hodmd.reconstructed_data[0].real, '--', label='DMD output')
plt.legend()
plt.show()
hodmd.dmd_time['tend'] = 50
fig = plt.figure(figsize=(15, 5))
plt.plot(hodmd.original_timesteps, snapshots, '.', label='snapshots')
plt.plot(np.linspace(0, 50, 128), myfunc(np.linspace(0, 50, 128)), '-', label='original function')
plt.plot(hodmd.dmd_timesteps, hodmd.reconstructed_data[0].real, '--', label='DMD output')
plt.legend()
plt.show()
noise_range = [.01, .05, .1, .2]
fig = plt.figure(figsize=(15, 10))
future = 20
for id_plot, i in enumerate(noise_range, start=1):
snapshots = y + np.random.uniform(-i, i, size=y.shape)
hodmd = HODMD(svd_rank=0, exact=True, opt=True, d=30).fit(snapshots)
hodmd.original_time['dt'] = hodmd.dmd_time['dt'] = x[1] - x[0]
hodmd.original_time['t0'] = hodmd.dmd_time['t0'] = x[0]
hodmd.original_time['tend'] = hodmd.dmd_time['tend'] = x[-1]
hodmd.dmd_time['tend'] = 20
plt.subplot(2, 2, id_plot)
plt.plot(hodmd.original_timesteps, snapshots, '.', label='snapshots')
plt.plot(np.linspace(0, future, 128), myfunc(np.linspace(0, future, 128)), '-', label='original function')
plt.plot(hodmd.dmd_timesteps, hodmd.reconstructed_data[0].real, '--', label='DMD output')
plt.legend()
plt.title('Noise [{} - {}]'.format(-i, i))
plt.show()