-
Notifications
You must be signed in to change notification settings - Fork 6
/
finetune.py
545 lines (496 loc) · 20.2 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
#!/usr/bin/env python
# coding=utf-8
"""
Fine-tuning CodeGen models on the input data.
Adapted from a HuggingFace transformers example for training seq2seq models.
Assumes that CodeGen model checkpoints are stored in {data_args.codegen_repo}/codegen-[6B|16B]-mono.
"""
import os
import sys
import logging
import torch
from dataclasses import dataclass, field
from typing import Dict, List, Optional
import datasets
from datasets import load_dataset, load_metric, DatasetDict
from jaxformer.hf import sample # from the CodeGen repository
from jaxformer.hf.codegen import modeling_codegen # from the CodeGen repository
import transformers
from transformers import (
DataCollatorForSeq2Seq,
HfArgumentParser,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
set_seed,
)
from transformers.trainer_utils import (
get_last_checkpoint,
)
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
default=None, metadata={"help": "Can be codegen-16B, or codegen-6B."}
)
config_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained config name or path if not the same as model_name"
},
)
cache_dir: Optional[str] = field(
default=None,
metadata={
"help": "Path to directory to store the pretrained models downloaded from huggingface.co"
},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={
"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
},
)
model_revision: str = field(
default="main",
metadata={
"help": "The specific model version to use (can be a branch name, tag name or commit id)."
},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
parallelize: bool = field(
default=False,
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
codegen_repo: Optional[str] = field(
default=None,
metadata={"help": "Path to the cloned SalesForce codegen repo."},
)
dataset_name: Optional[str] = field(
default=None,
metadata={"help": "The name of the dataset to use (via the datasets library)."},
)
dataset_config_name: Optional[str] = field(
default=None,
metadata={
"help": "The configuration name of the dataset to use (via the datasets library)."
},
)
prompt_column: Optional[str] = field(
default="finetuning_prompt",
metadata={
"help": "The name of the column in the datasets containing the task prompt."
},
)
completion_column: Optional[str] = field(
default="finetuning_completion",
metadata={
"help": "The name of the column in the datasets containing the refinement of the code."
},
)
train_file: Optional[str] = field(
default=None,
metadata={"help": "The input training data file (a text file)."},
)
validation_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."
},
)
test_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input test data file to evaluate the perplexity on (a text file)."
},
)
overwrite_cache: bool = field(
default=False,
metadata={"help": "Overwrite the cached training and evaluation sets"},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_seq_length: int = field(
default=1024,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
max_answer_length: int = field(
default=1024,
metadata={
"help": "The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
},
)
val_max_answer_length: Optional[int] = field(
default=None,
metadata={
"help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_answer_length`."
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
},
)
pad_to_max_length: bool = field(
default=True,
metadata={
"help": "Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch (which can "
"be faster on GPU but will be slower on TPU)."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
version_2_with_negative: bool = field(
default=False,
metadata={"help": "If true, some of the examples do not have an answer."},
)
null_score_diff_threshold: float = field(
default=0.0,
metadata={
"help": "The threshold used to select the null answer: if the best answer has a score that is less than "
"the score of the null answer minus this threshold, the null answer is selected for this example. "
"Only useful when `version_2_with_negative=True`."
},
)
doc_stride: int = field(
default=128,
metadata={
"help": "When splitting up a long document into chunks, how much stride to take between chunks."
},
)
n_best_size: int = field(
default=20,
metadata={
"help": "The total number of n-best predictions to generate when looking for an answer."
},
)
num_beams: Optional[int] = field(
default=5,
metadata={
"help": "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
"which is used during ``evaluate`` and ``predict``."
},
)
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
},
)
def __post_init__(self):
if (
self.dataset_name is None
and self.train_file is None
and self.validation_file is None
and self.test_file is None
):
raise ValueError(
"Need either a dataset name or a training/validation file/test_file."
)
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in [
"csv",
"json",
"jsonl",
], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in [
"csv",
"json",
], "`validation_file` should be a csv or a json file."
if self.test_file is not None:
extension = self.test_file.split(".")[-1]
assert extension in [
"csv",
"json",
], "`test_file` should be a csv or a json file."
if self.val_max_answer_length is None:
self.val_max_answer_length = self.max_answer_length
question_answering_column_name_mapping = {
"squad_v2": ("question", "context", "answer"),
}
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)
)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if (
os.path.isdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif (
last_checkpoint is not None and training_args.resume_from_checkpoint is None
):
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if extension == "jsonl":
extension = "json"
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
# raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
if extension == "json":
raw_datasets = DatasetDict.from_json(data_files)
else:
raw_datasets = DatasetDict.from_csv(data_files)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.model_name_or_path.startswith("codegen-"):
if last_checkpoint is not None:
model = modeling_codegen.CodeGenForCausalLM.from_pretrained(
last_checkpoint, low_cpu_mem_usage=True
)
else:
model = modeling_codegen.CodeGenForCausalLM.from_pretrained(
f"{data_args.codegen_repo}/{model_args.model_name_or_path}-mono",
low_cpu_mem_usage=True,
)
## IMPORTANT: DO NOT REMOVE
model = model.to(torch.float32)
tokenizer = sample.create_custom_gpt2_tokenizer()
# tokenizer.padding_side = 'left'
tokenizer.pad_token = 50256
if model_args.parallelize:
model.parallelize()
else:
model = model.cuda()
else:
raise ValueError(
f"{model_args.model_name_or_path} is not a valid model name or path."
)
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets.
# We need to generate and tokenize inputs and targets.
if training_args.do_train:
column_names = list(raw_datasets["train"].features.keys())
elif training_args.do_eval:
column_names = list(raw_datasets["validation"].features.keys())
elif training_args.do_predict:
column_names = list(raw_datasets["test"].features.keys())
else:
logger.info(
"There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`."
)
return
# Get the column names for input/target.
dataset_columns = question_answering_column_name_mapping.get(
data_args.dataset_name, None
)
if data_args.prompt_column is None:
prompt_column = (
dataset_columns[0] if dataset_columns is not None else column_names[0]
)
else:
prompt_column = data_args.prompt_column
if prompt_column not in column_names:
raise ValueError(
f"--prompt_column' value '{data_args.prompt_column}' needs to be one of: {', '.join(column_names)}"
)
if data_args.completion_column is None:
completion_column = (
dataset_columns[2] if dataset_columns is not None else column_names[2]
)
else:
completion_column = data_args.completion_column
if completion_column not in column_names:
raise ValueError(
f"--completion_column' value '{data_args.completion_column}' needs to be one of: {', '.join(column_names)}"
)
# Temporarily set max_answer_length for training.
max_answer_length = data_args.max_answer_length
padding = "max_length" if data_args.pad_to_max_length else False
if training_args.label_smoothing_factor > 0 and not hasattr(
model, "prepare_decoder_input_ids_from_labels"
):
logger.warning(
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
)
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
def truncate(ex, tokenizer, max_length):
return tokenizer.decode(
tokenizer(ex, max_length=max_length, truncation=True).input_ids
)
def preprocess_example(example):
input_str = truncate(example[prompt_column], tokenizer, max_seq_length)
r = example[completion_column]
input_token_ids = tokenizer.encode(input_str, verbose=False)
target_token_ids = tokenizer.encode(r, verbose=False) + [tokenizer.eos_token_id]
input_ids = input_token_ids + target_token_ids
labels_input_ids = ([-100] * len(input_token_ids)) + target_token_ids
if len(input_ids) > max_seq_length:
input_ids = input_ids[:max_seq_length]
labels_input_ids = labels_input_ids[:max_seq_length]
return {
"input_ids": torch.IntTensor(input_ids).cuda(),
"labels": torch.IntTensor(labels_input_ids).cuda(),
}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
with training_args.main_process_first(desc="train dataset map pre-processing"):
train_dataset = train_dataset.map(
preprocess_example,
remove_columns=column_names,
)
if data_args.max_train_samples is not None:
# Number of samples might increase during Feature Creation, We select only specified max samples
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
# Data collator
label_pad_token_id = (
-100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
)
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
# Initialize our Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
tokenizer=tokenizer,
data_collator=data_collator,
)
old_collator = trainer.data_collator
trainer.data_collator = lambda data: dict(old_collator(data))
# Training
if training_args.do_train:
train_result = trainer.train()
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples
if data_args.max_train_samples is not None
else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()