- Welcome and course info (10 min)
- Assignment 1 (15 min)
- tsibble: index, key (25 min)
- tsibble: index, key exercise
- Creating a tsibble from a csv
- dplyr manipulation: summarise, filter
2.10: Q1 (2 series), Q2, Q3, Q7
- tsibble: data from files, frequency, interval, temporal gaps (20 min)
- autoplot() time plots (15 min)
- time series patterns: trend and seasonality
- Time series graphics: season, subseries (15 min)
2.10: Q9, Q10, Q11
- Exam question B.1 from 2024 and 2023
- time series patterns: difference between seasonality and cyclicity
- lag plots, ACF graphs
- cross-sectional visualization
3.7: Q2 (2 series), ~Q3 (show, not ask), Q4 + STL decomposition on project data
- Log and box-cox transformations (20 min)
- STL decomposition (30 min)
3.7: Q9, Q10 (add Q3 in detail into workshop too)
- Other transformations
- Other decompositions
- Decomposition plotting
- Exam B.2 from 2024
5.11: Q1, Q3, Q5
- Forecasting workflow -> tutorial setup (5 min)
- Benchmark forecasting: mean, naive, snaive, drift (25 min)
5.11: Q2, Q11
- Linear trends, dummy seasonality
- Decomposition forecasting
5.11 Q8
- Residual diagnostics (20 mins)
- Accuracy evaluation: train, test, cross-validation (30 min)
Ex 5.11: Q6, 7, 9, 10,
- Exam Q A3 from 2024, and similar.
8.8: Q1, Q2, Q3, Q4
- Exponential smoothing concepts (20 min)
- ETS forecasting (30 min)
8.8: Q16, Q17
- ETS forecasting by hand (30 min)
8.8: Q5, Q8 (added), Q14
- Intuition of exponential smoothing (10 mins)
- Relation to benchmark models (5 mins)
- Additive/multiplicative error, trend, seasonality (15 mins)
- ETS forecasting (20 mins)
8.8: Q10
- Recall residual diagnostics (10 mins)
- Dampened trend (10 mins)
9.11: Q2, Q3(a,c), Q5
- Stationarity (20 mins)
- Transformation + differencing (10 mins)
- ACF + PACF (20 mins)
9.11: Q1, Q4, Q3(b)
- White noise -- moved to W6 residual diagnostics (15 mins)
- Backshift notation (15 mins)
9.11: Q7, Q9
- Identifying AR/MA from PACF/ACF (20 mins)
- Non-seasonal ARIMA modeling (20 mins)
- Backshift notation with ARIMA (10 mins)
9.11: Q6
- Long term forecast behaviour c+d (10 mins)
9.11: Q11, Q14 (+ writing out models)
- Recap non-seasonal ARIMA (10 mins)
- Seasonal lagged autocorrelations (10 mins)
- Seasonal ARIMA models (20 mins)
- Backshift notation with SARIMA (10 mins)
9.11: Q12, Q16
- ARIMA forecasting by hand (20 mins)
- STL+ARIMA forecasting (10 mins)
7.10: Q6, Q4 (+ fourier)
- Regression recap (5 mins)
- Piecewise trends (20 mins)
- Fourier seasonality (25 mins)
7.10: Q1, Q2, Q5
- Exogenous regressors (10 mins)
- Scenario forecasting (10 mins)
10.7: Q2, Q5
- ARIMA errors and residual diagnostics (20 mins)
- Dynamic harmonic regression (15 mins)
- Project assessment support (15 mins)
10.7: Q6
- Equation writing (10 mins)
- Manual forecasting (20 mins)