diff --git a/app/blog/(posts)/building-a-molecular-graph-neural-network-model-with-jaqpotpy/page.mdx b/app/blog/(posts)/building-a-molecular-graph-neural-network-model-with-jaqpotpy/page.mdx index 841e5a2..5f88f73 100644 --- a/app/blog/(posts)/building-a-molecular-graph-neural-network-model-with-jaqpotpy/page.mdx +++ b/app/blog/(posts)/building-a-molecular-graph-neural-network-model-with-jaqpotpy/page.mdx @@ -58,13 +58,12 @@ featurizer.set_default_config() # Create datasets train_dataset = SmilesGraphDataset( smiles=train_smiles, y=train_y, featurizer=featurizer -).precompute_featurization() -val_dataset = SmilesGraphDataset( - smiles=val_smiles, y=val_y, featurizer=featurizer -).precompute_featurization() -test_dataset = SmilesGraphDataset( - smiles=test_smiles, y=test_y, featurizer=featurizer -).precompute_featurization() +) +train_dataset.precompute_featurization() +val_dataset = SmilesGraphDataset(smiles=val_smiles, y=val_y, featurizer=featurizer) +val_dataset.precompute_featurization() +test_dataset = SmilesGraphDataset(smiles=test_smiles, y=test_y, featurizer=featurizer) +test_dataset.precompute_featurization() ``` ### 3. Define the model Set up the Graph Neural Network model. In our case we will use a simple Graph Convolution Neural Network. For simplicity we will not mess with the network's hyperparameters. However you can freely choose the depth, activation function and more components of the architecture.