-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbatch_nas_algorithms.py
245 lines (178 loc) · 7.15 KB
/
batch_nas_algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import sys
sys.path.insert(0,'..')
import pickle
import sys
import copy
import numpy as np
from argparse import Namespace
from data import Data
#from acquisition_functions import acq_fn
#from bo.bo.probo import ProBO
#from bo.dom.list import ListDomain
from bo.pp.pp_gp_my_distmat import MyGpDistmatPP
#from argparse import Namespace
from tqdm import tqdm
from cyDPP.decompose_kernel import decompose_kernel
from cyDPP.sample_dpp import sample_dpp
def run_batch_nas_algorithm(search_space,algo_params):
# run nas algorithm
ps = copy.deepcopy(algo_params)
algo_name = ps['algo_name']
#algo_name = ps.pop('algo_name')
if algo_name == 'random':
ps.pop('algo_name')
ps.pop('batch_size')
data = random_search(search_space, **ps)
elif "gp" in algo_name:
data = gp_batch_bayesopt_search(search_space, **ps)
else:
print('invalid algorithm name')
sys.exit()
k = 1
if 'k' in ps:
k = ps['k']
result_val=compute_best_val_losses(data, k, len(data))
result_test=compute_best_test_losses(data, k, len(data))
return result_val,result_test
def compute_best_test_losses(data, k, total_queries):
"""
Given full data from a completed nas algorithm,
output the test error of the arch with the best val error
after every multiple of k
"""
results = []
for query in range(k, total_queries + k, k):
best_arch = sorted(data[:query], key=lambda i:i[3])[0]
test_error = best_arch[3]
results.append((query, test_error))
return results
def compute_best_val_losses(data, k, total_queries):
"""
Given full data from a completed nas algorithm,
output the test error of the arch with the best val error
after every multiple of k
"""
results = []
for query in range(k, total_queries + k, k):
best_arch = sorted(data[:query], key=lambda i:i[2])[0]
test_error = best_arch[2]
results.append((query, test_error))
return results
def random_search(search_space,
total_queries=100,
k=10,
allow_isomorphisms=False,
deterministic=True,
verbose=1):
"""
random search
"""
data = search_space.generate_random_dataset(num=total_queries,
allow_isomorphisms=allow_isomorphisms,
deterministic_loss=deterministic)
val_losses = [d[2] for d in data]
#top 10
val_losses = [np.asscalar(d[2]) for d in data]
top_arches_idx = np.argsort(np.asarray(val_losses))[:10] # descending
top_arches=[data[ii][0] for ii in top_arches_idx]
pickle.dump([top_arches,val_losses], open( "10_best_architectures.p", "wb" ) )
print(val_losses[top_arches_idx[0]])
if verbose:
top_5_loss = sorted([d[2] for d in data])[:min(5, len(data))]
print('Query {}, top 5 val losses {}'.format(total_queries, top_5_loss))
return data
def GP_KDPP_Quality(myGP,xtrain,ytrain,xtest,newls,batch_size=5) :
# KDPP for sampling diverse + quality items
localGP=copy.deepcopy(myGP)
#data = Namespace()
#data.X = xtrain
#data.y = ytrain
#localGP.set_data(data)
N=len(xtest)
mu_test,sig_test=localGP.gp_post(xtrain,ytrain,xtest,ls=newls,alpha=1,sigma=1e-3)
score=np.exp(-mu_test)
qualityK=np.zeros((N,N))+np.eye(N)*score.reshape((-1,1))
L=qualityK*sig_test*qualityK
# decompose it into eigenvalues and eigenvectors
vals, vecs = decompose_kernel(L)
dpp_sample = sample_dpp(vals, vecs, k=batch_size)
x_t_all=[ xtest[ii] for ii in dpp_sample]
return x_t_all,dpp_sample
# def GP_KDPP(myGP,xtrain,ytrain,xtest,newls,batch_size=5) :
# # KDPP for sampling diverse + quality items
# localGP=copy.deepcopy(myGP)
# mu_test,sig_test=localGP.gp_post(xtrain,ytrain,xtest,ls=newls,alpha=1,sigma=1e-3)
# #qualityK=np.zeros((N,N))+np.eye(N)*mu_test.reshape((-1,1))
# L=sig_test
#
# # decompose it into eigenvalues and eigenvectors
# vals, vecs = decompose_kernel(L)
# dpp_sample = sample_dpp(vals, vecs, k=batch_size)
# x_t_all=[ xtest[ii] for ii in dpp_sample]
# return x_t_all,dpp_sample
def optimize_GP_hyper(myGP,xtrain,ytrain,distance):
# optimizing the GP hyperparameters
if distance =="tw_distance" or distance=="tw_2_distance" or distance=="tw_2g_distance":
newls=myGP.optimise_gp_hyperparameter_v3(xtrain,ytrain,alpha=1,sigma=1e-4)
else:
newls=myGP.optimise_gp_hyperparameter(xtrain,ytrain,alpha=1,sigma=1e-3)
return newls
def gp_batch_bayesopt_search(search_space,
num_init=10,
batch_size=5,
total_queries=100,
distance='edit_distance',
algo_name='gp_bucb',
deterministic=True,
nppred=1000):
"""
Bayesian optimization with a GP prior
"""
num_iterations = total_queries - num_init
# black-box function that bayesopt will optimize
def fn(arch):
return search_space.query_arch(arch, deterministic=deterministic)[2]
# this is GP
modelp = Namespace(kernp=Namespace(ls=0.11, alpha=1, sigma=1e-5), #ls=0.11 for tw
infp=Namespace(niter=num_iterations, nwarmup=5),#500
distance=distance, search_space=search_space.get_type())
modelp.distance=distance
# Set up initial data
init_data = search_space.generate_random_dataset(num=num_init,
deterministic_loss=deterministic)
xtrain = [d[0] for d in init_data]
ytrain = np.array([[d[2]] for d in init_data])
# init
data = Namespace()
data.X = xtrain
data.y = ytrain
myGP=MyGpDistmatPP(data,modelp,printFlag=False)
for ii in tqdm(range(num_iterations)):##
ytrain_scale=(ytrain-np.mean(ytrain))/np.std(ytrain)
data = Namespace()
data.X = xtrain
data.y = ytrain_scale
myGP.set_data(data) #update new data
xtest=search_space.get_candidate_xtest(xtrain,ytrain)
xtest=xtest[:100]
# this is to enforce to reupdate the K22 between test points
myGP.K22_d=None
myGP.K22_d1=None
# generate xtest # check here, could be wrong
#xtest = mylist.unif_rand_sample(500)
if ii%5==0:
newls=optimize_GP_hyper(myGP,xtrain,ytrain_scale,distance)
# select a batch of candidate
x_batch,idx_batch=GP_KDPP_Quality(myGP,xtrain,ytrain_scale,xtest,newls,batch_size)
# evaluate the black-box function
for xt in x_batch:
yt=fn(xt)
xtrain=np.append(xtrain,xt)
ytrain=np.append(ytrain,yt)
print(np.min(ytrain))
# get the validation and test loss for all architectures chosen by BayesOpt
results = []
for arch in xtrain:
archtuple = search_space.query_arch(arch,deterministic=deterministic)
results.append(archtuple)
return results