-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathBayesOpt_BNMC.m
263 lines (197 loc) · 7.05 KB
/
BayesOpt_BNMC.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
function utility = BayesOpt_BNMC( parameters,data)
% Let consider the black-box function y=f(X)
% or utility=f(parameter)
% where f is the BNMC algorithm, y is the accuracy and X is a vector of
% variables
% =====================================================================
% y: is the output utility (accuracy)
% =====================================================================
% X: is the input parameter
% 1. eta_xx: Dirichlet symmetric for feature
% default=0.1, range=[0.001-1]
% 2. eta_yy: Dirichlet symmetric for labels
% default=0.01, range=[0.001-1]
% 3. learing rate: for stochastic variational inference
% default=0.001, range=[0.0001-0.1]
% 4. lambda: for SGD (will be later divide for nTrain)
% default=64, range=[1-200]
% 5. truncation threshold: will be later multiply nTrain
% default=0.00001, range=[0.000001-0.1]
% 6. alpha: variable for stick-breaking
% default=1, range=[0.1-2]
% =====================================================================
% data: contains the Scene data
% data.xxTrain:
% data.yyTrain:
% data.xxTest:
% data.yyTest:
if isempty(data)
else
xxTrain=full(data.xxTrain);
yyTrain=full(data.yyTrain);
xxTest=full(data.xxTest);
yyTest=full(data.yyTest);
end
nTrain=size(xxTrain,1);
% Dirichlet symmetric
eta_xx=parameters(1);
eta_yy=parameters(2);
% learning rate for SVI
learn_rate=parameters(3);
% SGD
lambda=parameters(4)/nTrain;
trun_thesh=parameters(5)*nTrain;
alpha=parameters(6);
options=11;
KK=15;
VX=size(xxTrain,2);
VY=size(yyTrain,2);
nTest=size(xxTest,1);
mean_number_yy=mean(sum(yyTrain,2));
std_number_yy=std(sum(yyTrain,2));
wwTrain=mat2cell(xxTrain,ones(1,nTrain),VX);
wwTest=mat2cell(xxTest,ones(1,nTest),VX);
llTrain=mat2cell(yyTrain,ones(1,nTrain),VY);
% customize for SGD estimation
yyTrain_sgd=yyTrain;
yyTrain_sgd(yyTrain==0)=-1;
% scale data to prevent bias estimation in SGD
weight=sum(yyTrain);
weight=weight./sum(weight);
xxTrain_sgd=xxTrain;
for ii=1:nTrain
xxTrain_sgd(ii,:)=xxTrain(ii,:).*(1-sum(weight(yyTrain(ii,:)==1)));
end
phi_xx=rand(KK,VX);
psi_yy=rand(KK,VY);
pi_1=ones(1,KK);
pi_2=alpha*ones(1,KK);
eta_classifier=zeros(VY,VX);
ww_array=cell(1,nTrain);
for tt=1:2
for nn=1:nTrain
Sigma_V=Expect_Log_Sticks(pi_1,pi_2);
exp_log_phi=Dirichlet_Expectation(phi_xx);
exp_log_psi=Dirichlet_Expectation(psi_yy);
% estimate zz - step 2 in Algorithm 2.
zz=Sigma_V(1:KK)'+exp_log_psi*full(llTrain{nn})'./sum(llTrain{nn})+...
exp_log_phi*full(wwTrain{nn})'./sum(wwTrain{nn});
zz=exp(zz-max(zz));
zz=zz./sum(zz);
global_zz(nn,:)=zz;
nat_grad_phi_xx=zz*full(wwTrain{nn});
nat_grad_psi_yy=zz*full(llTrain{nn});
nat_grad_pi_1=1+nTrain*zz;
temp=cumsum(zz);
nat_grad_pi_2=alpha+2*nTrain*(1-temp);
if nn==1
init_learn_rate=0.99;
% step 3 in Algorithm 2.
phi_xx=(1-init_learn_rate)*phi_xx+init_learn_rate*(eta_xx+nTrain*nat_grad_phi_xx);
% step 4 in Algorithm 2.
psi_yy=(1-init_learn_rate)*psi_yy+init_learn_rate*(eta_yy+nTrain*nat_grad_psi_yy);
% step 5 in Algorithm 2.
pi_1=(1-init_learn_rate)*pi_1+init_learn_rate*nat_grad_pi_1';
pi_2=(1-init_learn_rate)*pi_2+init_learn_rate*nat_grad_pi_2';
else
% step 3 in Algorithm 2.
phi_xx=(1-learn_rate)*phi_xx+learn_rate*(eta_xx+2*nTrain*nat_grad_phi_xx);
% step 4 in Algorithm 2.
psi_yy=(1-learn_rate)*psi_yy+learn_rate*(eta_yy+2*nTrain*nat_grad_psi_yy);
% step 5 in Algorithm 2.
pi_1=(1-learn_rate)*pi_1+learn_rate*nat_grad_pi_1';
pi_2=(1-learn_rate)*pi_2+learn_rate*nat_grad_pi_2';
end
% step 6 in Algorithm 2.
switch options
case 21
xt = xxTrain_sgd(nn,:)';
yt = yyTrain_sgd(nn,:);
IsSatisfied=ones(1,VY);
temp=full(yt.*(eta_classifier*xt)');% hingle loss
IsSatisfied(temp>=1)=0;
mygrad=-xt*yt;
eta=1/(lambda*nn);% learning rate
mygrad=mygrad';
eta_classifier(IsSatisfied==1,:)=eta_classifier(IsSatisfied==1,:)-eta*mygrad(IsSatisfied==1,:);
ww_array{nn}=eta_classifier;
case 22
xt = xxTrain_sgd(nn,:)';
yt = yyTrain_sgd(nn,:);
temp=full(-yt.*(eta_classifier*xt)');% logistic loss
temp(temp>100)=100;% smoothing
mygrad=-xt*(yt.*exp(temp)./(exp(temp)+1));
eta=1/(lambda*nn);% learning rate
mygrad=mygrad';
eta_classifier=((nn-1)/nn)*eta_classifier-eta*mygrad;
ww_array{nn}=eta_classifier;
end
end
end
% truncation step in SVI to remove the empty topic
temp_sum=sum(global_zz);
idx=find(temp_sum<trun_thesh);
phi_xx(idx,:)=[];
psi_yy(idx,:)=[];
KK=KK-length(idx);
% normalize phi and psi
phi_xx=bsxfun(@rdivide,phi_xx,sum(phi_xx,2));
psi_yy=bsxfun(@rdivide,psi_yy,sum(psi_yy,2));
fprintf('KK=%d\n',KK);
%% estimating eta
switch options
case 11
%fprintf('BNMC-SVM')
[ eta_classifier] = Estimating_Classifier_SVM( xxTrain, yyTrain );
case 12
%fprintf('BNMC-LR')
[ eta_classifier] = Estimating_Classifier_Logistic( xxTrain, yyTrain );
case 21
%fprintf('BNMC-Online-SVM')
% estimate mean(eta_classifier) to reduce uncertainty
sum_ww_array=zeros(size(eta_classifier));
for nn=3:nTrain
sum_ww_array=sum_ww_array+ww_array{nn};
end
sum_ww_array=sum_ww_array./(nTrain-3);
eta_classifier=sum_ww_array';
case 22
%fprintf('BNMC-Online-LR')
% estimate mean(eta_classifier) to reduce uncertainty
sum_ww_array=zeros(size(eta_classifier));
for nn=3:nTrain
sum_ww_array=sum_ww_array+ww_array{nn};
end
sum_ww_array=sum_ww_array./(nTrain-3);
eta_classifier=sum_ww_array';
end
%% test set
global_zzTest=zeros(nTest,KK);
exp_log_phi=Dirichlet_Expectation(phi_xx);
for nn=1:nTest
Sigma_V=Expect_Log_Sticks(pi_1,pi_2);
phi=Sigma_V(1:KK)'+exp_log_phi*full(wwTest{nn})'./sum(wwTest{nn});
phi=exp(phi-max(phi));
phi=phi./sum(phi);
global_zzTest(nn,:)=phi;
end
prob_prior_yyTest=global_zzTest*psi_yy;
prob_classifier_yyTest=SigmoidFunction(xxTest*eta_classifier);
prob_predicted_yyTest=prob_classifier_yyTest.*prob_prior_yyTest;
prob_predicted_yyTest=bsxfun(@rdivide,prob_predicted_yyTest,sum(prob_predicted_yyTest,2));
pred_yyTest=zeros(nTest,VY);
% generate T
TT = normrnd(mean_number_yy,std_number_yy^2,nTest,1);
TT=ceil(TT);
for ii=1:nTest
for tt=1:TT(ii)
uu = rand;
kk = 1+sum(uu>cumsum(prob_predicted_yyTest(ii,:)));
pred_yyTest(ii,kk)=1;
end
end
% evaluation
%% Evaluation
[ Scores ] = MultiLabelEvaluation( yyTest,pred_yyTest );
utility=Scores.F1;
end