-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshowPatches.py
55 lines (44 loc) · 1.44 KB
/
showPatches.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from __future__ import print_function, unicode_literals, absolute_import, division
import numpy as np
import matplotlib.pyplot as plt
from csbdeep.utils import Path, download_and_extract_zip_file, plot_some, normalize, normalize_mi_ma
from csbdeep.io import load_training_data, save_tiff_imagej_compatible
#(X_train, Y_train), (X_val,Y_val), axes = load_training_data('data_label.npz', validation_split=0.1, verbose=True)
data = np.load('data_label.npz')
#training images (180)
print('Images number :', len(data['X']))
x = data['Y'][2,...,0]
print('x len :', len(data['X'][0]))
print('image size =', x.shape)
# To see npz content :
"""
lst = data.files
for item in lst:
print("item : ", item)
print("data: ", data[item])
"""
# To download :
import matplotlib.pyplot as plt
for i in range(5, 10):
img = normalize(data['X'][i], 0, 100, clip=True)
plt.imshow(np.squeeze(img))
plt.savefig("X/img" + str(i) + ".png")
img = normalize(data['Y'][i], 0, 100, clip=True)
plt.imshow(np.squeeze(img))
plt.savefig("Y/img" + str(i) + ".png")
plt.show()
# To show patch pairs X / Y
fig=plt.figure(figsize=(8, 4))
plt.axis('off')
h = 2
w = 5
for i in range(1, w):
plt.subplot(h, w, i)
img = np.squeeze(normalize(data['X'][i][0][5], 0, 100, clip=True))
plt.axis('off')
plt.imshow(img)
plt.subplot(h, w, w + i)
img = np.squeeze(normalize(data['Y'][i][0][5], 0, 100, clip=True))
plt.axis('off')
plt.imshow(img)
plt.show()