-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdetection.py
251 lines (211 loc) · 8.95 KB
/
detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#! /usr/bin/env python
# Modified version of: https://github.com/bradmontgomery/python-laser-tracker
# (scalable window; trigger on change; only show first laser hit, not trail)
import sys
import cv2
import numpy
import time
import queue
class LaserTracker(object):
def __init__(self, cam_width=640, cam_height=480, hue_min=20, hue_max=160,
sat_min=100, sat_max=255, val_min=200, val_max=256,
display_thresholds=False, cam_index=0, detection_queue=None, cam_zoom=1):
"""
* ``cam_width`` x ``cam_height`` -- This should be the size of the
image coming from the camera. Default is 640x480.
HSV color space Threshold values for a RED laser pointer are determined
by:
* ``hue_min``, ``hue_max`` -- Min/Max allowed Hue values
* ``sat_min``, ``sat_max`` -- Min/Max allowed Saturation values
* ``val_min``, ``val_max`` -- Min/Max allowed pixel values
If the dot from the laser pointer doesn't fall within these values, it
will be ignored.
* ``display_thresholds`` -- if True, additional windows will display
values for threshold image channels.
"""
self.cam_width = cam_width
self.cam_height = cam_height
self.hue_min = hue_min
self.hue_max = hue_max
self.sat_min = sat_min
self.sat_max = sat_max
self.val_min = val_min
self.val_max = val_max
self.display_thresholds = display_thresholds
self.last_detection = time.time()
self.detection_delay = 2 # amount of seconds to pass between redetection, to avoid detecting a long laser streak
self.detection = True # send the initial frame
self.cam_index = cam_index
self.queue = detection_queue
self.cam_zoom = cam_zoom
self.capture = None # camera capture device
self.channels = {
'hue': None,
'saturation': None,
'value': None,
'laser': None,
}
self.previous_position = None
def create_and_position_window(self, name, xpos, ypos):
"""Creates a named widow placing it on the screen at (xpos, ypos)."""
# Create a window
cv2.namedWindow(name, cv2.WINDOW_NORMAL)
# Resize it to the size of the camera image
cv2.resizeWindow(name, (self.cam_width * self.cam_zoom), (self.cam_height * self.cam_zoom))
# Move to (xpos,ypos) on the screen
cv2.moveWindow(name, xpos, ypos)
def setup_camera_capture(self):
"""Perform camera setup for the device number (default device = 0).
Returns a reference to the camera Capture object.
"""
try:
device = int(self.cam_index)
sys.stdout.write("Using Camera Device: {0}\n".format(device))
except (IndexError, ValueError):
# assume we want the 1st device
device = 0
sys.stderr.write("Invalid Device. Using default device 0\n")
# Try to start capturing frames
self.capture = cv2.VideoCapture(device)
if not self.capture.isOpened():
sys.stderr.write("Faled to Open Capture device. Quitting.\n")
sys.exit(1)
# set the wanted image size from the camera
self.capture.set(
cv2.cv.CV_CAP_PROP_FRAME_WIDTH if cv2.__version__.startswith('2') else cv2.CAP_PROP_FRAME_WIDTH,
self.cam_width
)
self.capture.set(
cv2.cv.CV_CAP_PROP_FRAME_HEIGHT if cv2.__version__.startswith('2') else cv2.CAP_PROP_FRAME_HEIGHT,
self.cam_height
)
return self.capture
def handle_quit(self, delay=10):
"""Quit the program if the user presses "Esc" or "q"."""
key = cv2.waitKey(delay)
c = chr(key & 255)
if c in ['q', 'Q', chr(27)]:
sys.exit(0)
def threshold_image(self, channel):
if channel == "hue":
minimum = self.hue_min
maximum = self.hue_max
elif channel == "saturation":
minimum = self.sat_min
maximum = self.sat_max
elif channel == "value":
minimum = self.val_min
maximum = self.val_max
(t, tmp) = cv2.threshold(
self.channels[channel], # src
maximum, # threshold value
0, # we dont care because of the selected type
cv2.THRESH_TOZERO_INV # t type
)
(t, self.channels[channel]) = cv2.threshold(
tmp, # src
minimum, # threshold value
255, # maxvalue
cv2.THRESH_BINARY # type
)
if channel == 'hue':
# only works for filtering red color because the range for the hue
# is split
self.channels['hue'] = cv2.bitwise_not(self.channels['hue'])
def track(self, frame, mask):
"""
Track the position of the laser pointer.
Code taken from
http://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/
"""
center = None
if (time.time() - self.last_detection < self.detection_delay):
return
countours = cv2.findContours(mask, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
# only proceed if at least one contour was found
if len(countours) > 0:
self.last_detection = time.time()
self.detection = True
# find the largest contour in the mask, then use
# it to compute the minimum enclosing circle and
# centroid
c = max(countours, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
moments = cv2.moments(c)
if moments["m00"] > 0:
center = int(moments["m10"] / moments["m00"]), \
int(moments["m01"] / moments["m00"])
else:
center = int(x), int(y)
self.previous_position = center
def detect(self, frame):
hsv_img = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# split the video frame into color channels
h, s, v = cv2.split(hsv_img)
self.channels['hue'] = h
self.channels['saturation'] = s
self.channels['value'] = v
# Threshold ranges of HSV components; storing the results in place
self.threshold_image("hue")
self.threshold_image("saturation")
self.threshold_image("value")
# Perform an AND on HSV components to identify the laser!
self.channels['laser'] = cv2.bitwise_and(
self.channels['hue'],
self.channels['value']
)
self.channels['laser'] = cv2.bitwise_and(
self.channels['saturation'],
self.channels['laser']
)
# Merge the HSV components back together.
hsv_image = cv2.merge([
self.channels['hue'],
self.channels['saturation'],
self.channels['value'],
])
self.track(frame, self.channels['laser'])
return hsv_image
def display(self, img, frame):
"""Display the combined image and (optionally) all other image channels
NOTE: default color space in OpenCV is BGR.
"""
if self.display_thresholds:
cv2.imshow('LaserPointer', self.channels['laser'])
cv2.imshow('RGB_VideoFrame', frame)
cv2.imshow('Thresholded_HSV_Image', img)
cv2.imshow('Hue', self.channels['hue'])
cv2.imshow('Saturation', self.channels['saturation'])
cv2.imshow('Value', self.channels['value'])
def setup_windows(self):
sys.stdout.write("Using OpenCV version: {0}\n".format(cv2.__version__))
# create output windows
if self.display_thresholds:
self.create_and_position_window('RGB_VideoFrame', 0, 0)
self.create_and_position_window('LaserPointer', 10 + self.cam_width, 0)
self.create_and_position_window('Thresholded_HSV_Image', 10, 10)
self.create_and_position_window('Hue', 20, 20)
self.create_and_position_window('Saturation', 30, 30)
self.create_and_position_window('Value', 40, 40)
def run(self):
# Set up window positions
self.setup_windows()
# Set up the camera capture
self.setup_camera_capture()
while True:
success, frame = self.capture.read()
if not success: # no image captured... end the processing
sys.stderr.write("Could not read camera frame. Trying again...\n")
time.sleep(1)
continue
hsv_image = self.detect(frame)
cv2.circle(frame, self.previous_position, 10, (0, 0, 255), 2)
self.display(hsv_image, frame)
if (self.detection):
print("Change detected.")
self.detection = False
cv2.imwrite('latest.jpg', frame)
if self.queue.empty():
self.queue.put(True)
self.handle_quit()