-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
119 lines (95 loc) · 3.25 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import numpy as np
import cv2
def rotation_mat(phi):
return np.array([[np.cos(phi), -np.sin(phi)], [np.sin(phi), np.cos(phi)]])
class UVSample:
def __init__(self, ants, rotate=None, Nu=128, ratio=3.0/4.0, keep_zero=True):
"""
Args:
ants : ndarray of shape (2, Nants)
Antenna positions in XY space.
Maximum separation for X-values of antennas should be 1.
rotate : float
Rotation of uv-plane in degrees, mimicking earth rotation synthesis.
Nu : int
Number of samples along the U direction of uv plane
ratio : float
Aspect ratio of uv plane: Nv = Nu * ratio
keep_zero : bool
If True, keep u=v=0 sampling in mask
"""
self.Nu = Nu
self.Nv = int(Nu * ratio)
self.shape = (self.Nv, self.Nu)
self.keep_zero = keep_zero
self.compute_mask(ants, rotate=rotate)
def compute_mask(self, ants, rotate=None):
# compute uv sampling from antenna array
self.ants = ants
uvs = (ants[:, None, :] - ants[:, :, None]).reshape(2, -1)
# only keep u >= 0 values
uvs = uvs[:, uvs[0] > 0]
# normalize uvs to this aspect ratio
# TODO: if using vertical aspect ratio, this should be uvs * self.Nu // 2
self.uvs = uvs * (self.Nv // 2)
if rotate is not None and rotate >= 5.0:
rotations = np.arange(0, rotate+.1, 5.0)
_uvs = []
for rot in rotations:
_uvs.append(rotation_mat(rot * np.pi / 180) @ self.uvs)
uvs = np.concatenate(_uvs, axis=-1)
self.uvs = uvs[:, uvs[0] > 0]
# construct mask
self.mask = np.zeros((self.Nv, self.Nu//2+1, 1), dtype=np.float32)
x_idx = np.digitize(self.uvs[0], np.arange(self.Nu//2)+.5, right=False)
y_idx = np.digitize(self.uvs[1] + self.Nv//2, np.arange(self.Nv-1)+.5, right=False)
self.mask[y_idx, x_idx] = 1.0
if self.keep_zero:
self.mask[self.Nv//2, 0] = 1.0
# normalize by mask filling factor
# this sets PSF to peak-normalized
# meaning if there is diffuse structure, then the reconstructed
# image will have max values > 255 and needs re-normalization
self.mask *= (self.mask.size / self.mask.sum())
def rfft(self, im):
return np.fft.fftshift(np.fft.rfft2(im, axes=(0, 1)), axes=(0,))
def fft_convolve(self, im):
imfft = self.rfft(im)
return np.fft.irfft2(np.fft.ifftshift(imfft * self.mask, axes=(0,)), s=im.shape[:2], axes=(0, 1)), imfft
def __call__(self, im):
# fft, multiply by mask, and ifft
imc, imfft = self.fft_convolve(im)
# normalize by imc.max()
imc *= 255 / imc.max()
return imc.clip(0, 255).astype(np.uint8), imfft
class Image:
def __init__(self, img=None, shape=None):
self.shape = shape
self.store(img)
def store(self, img=None):
if img is not None:
if self.shape is not None and img.shape != self.shape:
img = cv2.resize(img, self.shape[::-1], cv2.INTER_NEAREST_EXACT)
if img.ndim != 3:
img = img[..., None]
self.img = img
def make_hex(N, D=.1):
x, y, ants = [], [], []
ant = 0
k = 0
start = 0
for i in range(2*N - 1):
for j in range(N + k):
x.append(j + start)
y.append(i * np.sin(np.pi/3))
ants.append(ant)
ant += 1
if i < N-1:
k += 1
start -= .5
else:
k -= 1
start += .5
x = np.array(x) - np.mean(x)
y = np.array(y) - np.mean(y)
return np.vstack([x, y]) * D