-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimg_stacking.py
41 lines (31 loc) · 1.45 KB
/
img_stacking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import cv2
import numpy as np
# Load the mask and original images
mask_path = "foreground_image.png" # The mask image (background only)
original_path = "star_trails_with_pole_star.png" # The original image
# Read the images
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE) # Read the mask as grayscale
original = cv2.imread(original_path) # Read the original image
# Ensure the mask and original image have the same size
if mask.shape[:2] != original.shape[:2]:
mask = cv2.resize(mask, (original.shape[1], original.shape[0]))
# Normalize the mask to range [0, 1]
mask_normalized = mask / 255.0
# Invert the mask for foreground
mask_inverted = 1.0 - mask_normalized
# Apply the mask to the original image and background
background = cv2.imread(mask_path) # Use the mask image as the background
if background.shape[:2] != original.shape[:2]:
background = cv2.resize(background, (original.shape[1], original.shape[0]))
# Composite the two images
foreground = cv2.multiply(mask_inverted[:, :, None], original.astype(np.float32) / 255.0)
background = cv2.multiply(mask_normalized[:, :, None], background.astype(np.float32) / 255.0)
composite = cv2.add(foreground, background)
# Convert to 8-bit for saving or displaying
composite = (composite * 255).astype(np.uint8)
# Save or display the composite image
cv2.imwrite('superimposed_image.png', composite)
# Display the result (optional)
cv2.imshow('Superimposed Image', composite)
cv2.waitKey(0)
cv2.destroyAllWindows()