-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqap.go
189 lines (177 loc) · 6.16 KB
/
qap.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
package playsnark
import (
"github.com/drand/kyber/share"
)
// QAP is the polynomial version of a R1CS circuit. It contains the left right
// and outputs polynomials. There are exactly n polynomials for each, where n is
// the number of variables.
type QAP struct {
// in pinocchio paper, this is the variable m
// the paper decomposes this into input/output variables
// with N = n + n' where n is input and n' is output
// then we have all variables = {1...N, N+1 ... m} - it contains the
// intermediate variables
nbVars int
// nbIO is N in the previous comment
nbIO int
// nbGates is the variable "d" in the pinochio paper
nbGates int
// left right and out
left []Poly
right []Poly
out []Poly
// z is the minimal polynomial (x-1)(x-2)(x-3)...
z Poly
}
// ToQAP takes a R1CS circuit description and turns it into its polynomial QAP
// form.
// The first thing it does is transposing each of the matrix of the R1CS so each
// row represents the pairs of point that we want to interpolate.
// It thens transforms these rows into their finite field version and
// interpolate the polynomial.
func ToQAP(circuit R1CS) QAP {
left := qapInterpolate(circuit.left)
right := qapInterpolate(circuit.right)
out := qapInterpolate(circuit.out)
nbVar := len(circuit.vars)
nbGates := len(circuit.left)
var z Poly
for i := 1; i <= nbGates; i++ {
// you multiply by (x - i) with i being as high as the number of gates,
// because the polynomials left,right and out vanishes on these inputs
// -i + x
xi := Poly([]Element{
NewElement().Neg(Value(i).ToFieldElement()),
one.Clone(),
})
if z == nil {
z = xi
} else {
z = z.Mul(xi)
}
}
return QAP{
nbVars: nbVar,
nbGates: nbGates,
nbIO: circuit.nbIO(),
left: left,
right: right,
out: out,
z: z,
}
}
func qapInterpolate(m Matrix) []Poly {
// once transposed, a row of this matrix represents all the usage of this
// variable at each step of the circuit
// so for example, all the assignements on the lefts inputs look like this
// in R1CS:
// c x out v u w
// [0, 1, 0, 0, 0, 0] g1
// [0, 0, 0, 1, 0, 0] g2
// [0, 1, 0, 0, 1, 0] g3
// [5, 0, 0, 0, 0, 1] g4
// so for example the second row of the transposed matrix represents all the
// usage of the variable "x" as a left wire in the circuit -> [1,0,1,0]
// Then we need to interpolate this as a polynomial such that:
// p(1) = 1, p(2) = 0, p(3) = 1 and p(4) = 0
// We return one polynomial for each variable
t := m.Transpose()
out := make([]Poly, 0, len(t))
for _, variable := range t {
var ys = make([]Element, 0, len(t))
for _, v := range variable {
ys = append(ys, v.ToFieldElement())
}
poly := Interpolate(ys)
out = append(out, poly)
}
return out
}
func toPoly(s *share.PriPoly) Poly {
pp := s.Coefficients()
return Poly(pp)
}
// Verify takes the vector of solution and makes the dot product with it such
// that
// t = (Left . s) * (Right . s) - (Out . s)
// z = minimal polynomial = (x - 1) * (x - 2) .. (x - #ofgates)
// h = t/z with no remainder ! if there is no remainder, that means
// the polynomial t vanishes on all the points corresponding to the gate since
// z is a factor, hence the solution is correct
func (q *QAP) IsValid(sol Vector) bool {
q.sanityCheck(sol)
// We need to multiply each entry of the solution with the corresponding
// polynomial.
// The original python code is short and self explanatory:
// for rval, a in zip(r, new_A):
// Apoly = add_polys(Apoly, multiply_polys([rval], a))
//
// Let me try to debunk that, by taking the left polynomials as example
// * There are 6 left polynomials, one for each variable, that set or unset
// the variable depending on the gate it is evaluated for.
// * The solution vector is of length 6, giving the value to set for each
// variable
// * We want to make a polynomial that evaluates all these polynomials at
// once that when "multiplied" (dot product) by the solution vector gives
// assign the right value to the right variable at the right gate, as in
// R1CS.
// * So we take the polynomial that corresponds to the first variable,
// multiply by the value from the solution vector, and add it to a
// acumulator polynomial.
// * We do the same for the second variable and we add it to the
// accumulator etc
// * That means when we evaluate solution at the first gate, so x=1, we
// will look diretly at all assignements of all variables in _one_ polynomial
// which is already "multiplied" by the solution vector
// ==> Ai(x) * si + Aj(x) * sj ...
// When evaluated to 1, first term will give the value of the const at the
// first gate, second term will give the value of the input "x" at the
// first gate etc leading to the same values as in R1CS.
// Left one
left, right, out := q.computeAggregatePoly(sol)
// Now we are using these precedent polynomials in the satisfying equation
// t(x) = left(x) * right(x) - out(x) = h(x)z(x)
t := left.Mul(right).Sub(out)
// now we try to verify if the equation is really satisfied by dividing eq /
// z(x) : we should find no remainder
_, rem := t.Div2(q.z)
if len(rem.Normalize()) > 0 {
return false
}
return true
}
func (q QAP) Quotient(sol Vector) Poly {
// compute h(x) then evaluate it blindly at point s
left, right, out := q.computeAggregatePoly(sol)
// p(x) = t(x) * h(x)
px := left.Mul(right).Sub(out)
// h(x) = p(x) / t(x)
hx, rem := px.Div2(q.z)
if len(rem.Normalize()) > 0 {
panic("apocalypse")
}
return hx
}
func (q QAP) computeAggregatePoly(sol Vector) (left Poly, right Poly, out Poly) {
left = Poly([]Element{})
right = Poly([]Element{})
out = Poly([]Element{})
for varIndex, val := range sol {
polyVal := Poly([]Element{val.ToFieldElement()})
left = left.Add(q.left[varIndex].Mul(polyVal))
right = right.Add(q.right[varIndex].Mul(polyVal))
out = out.Add(q.out[varIndex].Mul(polyVal))
}
return
}
func (q QAP) sanityCheck(sol Vector) {
if len(sol) != len(q.left) {
panic("different number of solution variables than left polynomials")
}
if len(sol) != len(q.right) {
panic("different numberof solution variables than right polynomials")
}
if len(sol) != len(q.out) {
panic("different numbers of solutions variables than out polynomials")
}
}