-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathold_distill.py
149 lines (124 loc) · 5.02 KB
/
old_distill.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Colab:
# Turn ON GPU
# !git clone https://github.com/nikitakapitan/nlphub.git
# !mv nlphub/distill.yaml .
# !mkdir logs
# !pip install datasets transformers evaluate accelerate
# python distill.py --config distill.yaml
import os
import yaml
import argparse
import logging
import time
from datasets import load_dataset
import evaluate
from transformers import AutoConfig, AutoTokenizer, AutoModelForSequenceClassification
from nlphub import DistillationTrainingArguments, DistillationTrainer
from nlphub.utils import rename_split_label_key, get_dataset_num_classes
# Initialize logging
if not os.path.exists('/content/logs/'):
os.makedirs('/content/logs/')
logging.basicConfig(filename=f"logs/train_{time.strftime('%Y-%m-%d_%H-%M-%S')}.log", level=logging.INFO)
def main(args):
with open(args, 'r') as f:
config = yaml.safe_load(f)
# Log input configs
logging.info("Input Configurations:")
logging.info(yaml.dump(config))
os.environ['TRANSFORMERS_TOKEN'] = config['HF_TOKEN']
device = 'cuda'
# Load Dataset
try:
dataset_config_name = config.get('DATASET_CONFIG_NAME') # can be None
dataset = load_dataset(config['DATASET_NAME'], dataset_config_name)
for split in dataset:
dataset[split] = rename_split_label_key(dataset[split])
num_classes = get_dataset_num_classes(dataset['train'].features)
logging.info(f"Dataset {config['DATASET_NAME']} loaded. {num_classes=}")
except Exception as e:
logging.error(f"Error loading dataset: {e}")
exit(1)
# INIT Tokenization
try:
student_tokenizer = AutoTokenizer.from_pretrained(config['STUDENT'])
logging.info(f"Tokenizer for {config['STUDENT']} initialized.")
except Exception as e:
logging.error(f"Error initializing tokenizer: {e}")
exit(1)
# Dynamic Class Mapping
AutoModelClass = {
'text-classification' : AutoModelForSequenceClassification
}[config['TASK']]
logging.info(f"Mapped to AutoModel Class: {AutoModelClass.__name__}")
# INIT Model (Teacher)
try:
hf_model = f"{config['HF_USER']}/{config['TEACHER']}"
teacher = AutoModelClass.from_pretrained(hf_model, num_labels=num_classes)
logging.info(f"Model {teacher.__class__.__name__} initialized with {num_classes} classes.")
teacher.to(device)
except Exception as e:
print(f"Error initializing model: {e}")
exit(1)
# INIT Model (Student)
def student_init():
student_config = AutoConfig.from_pretrained(config['STUDENT'],
num_labels=num_classes,
id2label=teacher.config.id2label,
label2id=teacher.config.label2id)
return AutoModelClass.from_pretrained(config['STUDENT'], config=student_config).to(device)
# # DEFINE compute_metrics
def compute_eval_metrics(eval_pred):
logits, labels = eval_pred
preds = logits.argmax(axis=-1)
accuracy_score = evaluate.load("accuracy")
return accuracy_score.compute(predictions=preds, references=labels)
# Tokenize
tokenize = lambda batch: student_tokenizer(batch['text'], truncation=True)
dataset_encoded = dataset.map(tokenize, batched=True)
# Distill Training Arguments
student_training_args = DistillationTrainingArguments(
output_dir=f'{config["TEACHER"]}-distilled-{config["DATASET_NAME"]}',
num_train_epochs=config['NUM_EPOCHS'],
learning_rate=config['LEARNING_RATE'],
per_device_train_batch_size=config['BATCH_SIZE'],
per_device_eval_batch_size=config['BATCH_SIZE'],
alpha = config['ALPHA'],
weight_decay=0.01,
evaluation_strategy='epoch',
disable_tqdm=False,
logging_dir='./logs',
push_to_hub=True,
log_level=config['LOG_LEVEL'],
)
trainer = DistillationTrainer(
model_init=student_init,
teacher_model=teacher,
args=student_training_args,
train_dataset=dataset_encoded['train'],
eval_dataset=dataset_encoded[config['EVAL_DATASET']],
tokenizer=student_tokenizer,
compute_metrics=compute_eval_metrics,
)
# Train and Evaluate
try:
print("Start TRAINING")
logging.info("Start TRAINING")
trainer.train()
trainer.evaluate()
logging.info("End TRAINING")
except Exception as e:
print(f"Error during training or evaluation: {e}")
exit(1)
# Push to Hub
try:
print("PUSH MODEL TO THE HUB")
trainer.push_to_hub()
logging.info("Model pushed to Hugging Face Hub.")
except Exception as e:
print(f"Error pushing to Hugging Face Hub: {e}")
exit(1)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Distilling models with Hugging Face Transformers')
parser.add_argument('--config', type=str, required=True, help='Path to the YAML config file')
args = parser.parse_args()
main(args.config)