-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetBinomTree.R
193 lines (179 loc) · 6.5 KB
/
getBinomTree.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# function for Pricing options via Binomial Trees
# returns a data frame having the binomial tree mapped into it
getBinomTree <- function(S0, K, vol, dT, r, qdiv, N_steps, isPut=F, isAmerican=F,
isAvgStrike=F, isKO=F, isChooser=F, H=NA, Kc=NA, Kp=NA, choose_t1=NA)
{
# number of nodes in tree
N_nodes <- (N_steps+1)*(1 + (N_steps+1))/2 # sum(1:(N_steps+1)) = n*(a_1 + a_n)/2
# time difference between steps
dT_step <- dT/N_steps
# discount factor for one step
D_step <- exp(-r*dT_step)
# up-movement factor
u <- exp(vol*dT_step^0.5)
# down-movement factor
d <- 1/u
# probability of up movement in a risk-neutral world
p <- (exp((r - qdiv)*dT_step) - d)/(u - d)
# create a data frame to keep nodes of tree with a mapping: dt(row_i) -> node_id like:
# 0|1|2|...|i ... |n
# ....................................................
# (n+1)*(1+n+1)/2 - n
# ...
# (i+1)*(1+i+1)/2-i
# 4 ...
# 2
# 1 5 ...(i+1)*(1+i+1)/2-j
# 3
# 6 ...
# (i+1)*(1+i+1)/2 ...
# (n+1)*(1+n+1)/2
df <- data.frame(i_node = 1:N_nodes, step=NA, N_u = NA, S = NA, P = NA)
if (isAmerican) {
df <- data.frame(i_node = 1:N_nodes, step=NA, N_u = NA, S = NA, P = NA, dP_Exerc = NA)
}
if (isChooser) {
df <- data.frame(i_node = 1:N_nodes, step=NA, N_u = NA, S = NA, P_Call = NA, P_Put = NA, P = NA)
}
for (i in N_steps:0)
{
for (j in 0:i)
{
i_node <- (i+1)*(1+i+1)/2-j # get id of node
df$step[i_node] <- i # time step
df$N_u[i_node] <- j # number of u multiplication
df$S[i_node] <- S0 * d^(i-j) * u^j # underlying asset price
# at terminal node - payoff at expir:
if (i == N_steps)
{
df$P[i_node] <- ifelse(isPut, max(K - df$S[i_node], 0), max(df$S[i_node] - K, 0))
if (isAmerican)
{
df$dP_Exerc[i_node] <- 0
}
if (isAvgStrike)
{
Savg <- getAvgStrikes(S0, j, i-j, d, u) # avg values of underlying price along all possible paths
if (isPut) {
df$P[i_node] <- mean(pmax(Savg - df$S[i_node], 0))
} else {
df$P[i_node] <- mean(pmax(df$S[i_node] - Savg, 0))
}
}
if (isChooser)
{
df$P_Call[i_node] <- max(df$S[i_node] - Kc, 0)
df$P_Put[i_node] <- max(Kp - df$S[i_node], 0)
df$P[i_node] <- NA
}
}
# at interim nodes - backward induction:
if (i < N_steps)
{
i_node_u <- ((i+1)+1)*(1+(i+1)+1)/2-(j+1) # find id of up node
i_node_d <- ((i+1)+1)*(1+(i+1)+1)/2-j # find if of down node
df$P[i_node] <- D_step * (p*df$P[i_node_u] + (1-p)*df$P[i_node_d])
if (isAmerican)
{
P_Exerc <- ifelse(isPut, max(K - df$S[i_node], 0), max(df$S[i_node] - K, 0))
df$dP_Exerc[i_node] <- P_Exerc - df$P[i_node]
df$P[i_node] <- max(df$P[i_node], P_Exerc)
}
if (isChooser)
{
df$P_Call[i_node] <- D_step * (p*df$P_Call[i_node_u] + (1-p)*df$P_Call[i_node_d])
df$P_Put[i_node] <- D_step * (p*df$P_Put[i_node_u] + (1-p)*df$P_Put[i_node_d])
if (i == round(choose_t1/(dT/N_steps), 0)){
df$P[i_node] <- max(df$P_Call[i_node], df$P_Put[i_node])
}
}
}
if (isKO)
{
if (isPut) {
if (df$S[i_node] >= H) { df$P[i_node] <- 0 }
} else {
if (df$S[i_node] <= H) { df$P[i_node] <- 0 }
}
}
}
}
return(df)
}
# example of inputs
getExampleInputs <- function()
{
# standard inputs for European and American options
S0 <<- 100 # asset price at t=0
K <<- 105 # strike
vol <<- 0.15 # volatility
dT <<- 1 # time to maturity (years)
r <<- 0.05 # risk-free rate
qdiv <<- 0 # dividend rate
N_steps <<- 50 # number of steps in tree
isPut <<- F # default: F (Call)
isAmerican <<- F # default: F (European)
# additional inputs for exotic options
isAvgStrike <<- F # is average strike options
isKO <<- F # is knock-out option
H <<- 110 # barrier strike for knock-out
isChooser <<- F # is chooser option
Kc <<- 105 # call strike for chooser option
Kp <<- 95 # put strike for chooser option
choose_t1 <<- 0.5 # time to choose for chooser option
}
# "envelope" functions for different type of options
# chooser option
getBinomTree.chooser <- function(S0, K, vol, dT, r, qdiv, N_steps, Kc, Kp, choose_t1)
{
df <- getBinomTree(S0, K, vol, dT, r, qdiv, N_steps, isPut=F, isAmerican=F,
isAvgStrike=F, isKO=F, isChooser=T, H=NA, Kc, Kp, choose_t1)
return(df)
}
# knock-out option
getBinomTree.ko <- function(S0, K, vol, dT, r, qdiv, N_steps, isPut, H)
{
df <- getBinomTree(S0, K, vol, dT, r, qdiv, N_steps, isPut, isAmerican=F,
isAvgStrike=F, isKO=T, isChooser=F, H, Kc=NA, Kp=NA, choose_t1=NA)
return(df)
}
# average strike option
getBinomTree.avgK <- function(S0, vol, dT, r, qdiv, N_steps, isPut)
{
if (N_steps > 10)
{
N_steps <- 10
print("(!) N_steps set equal to 10. N_steps enters as factorial in number of possible paths!")
}
df <- getBinomTree(S0, K=NA, vol, dT, r, qdiv, N_steps, isPut, isAmerican=F,
isAvgStrike=T, isKO=F, isChooser=F, H=NA, Kc=NA, Kp=NA, choose_t1=NA)
return(df)
}
# get the average values of all possible paths of the underlying until the terminal node
# used for average strike options
getAvgStrikes <- function(S0, N_u, N_d, d, u)
{
# (!) N of permutations of multisets = (N_u+N_d)!/(N_d!*N_u!)
if ((N_u + N_d) > 10)
{
print("(!) Give a lower number of N steps for the tree. N enters as factorial!")
return(NA)
}
mx_comb <- combn(1:(N_u + N_d), N_u, simplify = FALSE)
mx_perm <- data.frame(matrix(unlist(mx_comb), nrow = length(mx_comb), byrow = T))
mx_ud <- data.frame(matrix(d, nrow = nrow(mx_perm), ncol = (N_u + N_d)))
mx_Savg <- rep(NA, nrow(mx_ud))
for (i in 1:nrow(mx_ud))
{
mx_ud[i, unlist(mx_perm[i, ])] <- u
St <- S0
sumS <- 0
for (j in 1:ncol(mx_ud))
{
St <- mx_ud[i, j] * St
sumS <- sumS + St
}
mx_Savg[i] <- sumS/(ncol(mx_ud))
}
return(mx_Savg)
}