-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.Rapp.history
625 lines (624 loc) · 17.8 KB
/
.Rapp.history
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
0.1*0.5+0.9*0.5
2*0.5*0.1
0.1*0.6+0.9*0.4
(100/58)*0.4*0.1
(100/58)*0.6*0.9
require('EvCombR')
mass_1 = c(rep(0.8, 9), 0.2, 0.2)
mass_1
mass_0 = c(rep(0.2, 9), 0.8, 0.8)
stateSpace <- c("0", "1")#
masses = vector("list", length(test[1,])-1)#
#Getting mass values for each feature of the example#
for(j in 1:(length(test[1,])-1)){#
masses[[j]] <- mass(list("0"=mass_0[1,j], "1"=mass_1[1,j], stateSpace) #
}#
#Using the modified Dempster combination to combine the prior distribution (the logistic probs)#
#with the mass values from the features #
mass_combo = dComb(masses)
stateSpace <- c("0", "1")#
masses = vector("list", 11)#
#Getting mass values for each feature of the example#
for(j in 1:(length(test[1,])-1)){#
masses[[j]] <- mass(list("0"=mass_0[1,j], "1"=mass_1[1,j], stateSpace) #
}#
#Using the modified Dempster combination to combine the prior distribution (the logistic probs)#
#with the mass values from the features #
mass_combo = dComb(masses)
mass_0
stateSpace <- c("0", "1")#
masses = vector("list", 11)#
#Getting mass values for each feature of the example#
for(j in 1:(length(test[1,])-1)) {#
masses[[j]] <- mass(list("0"=mass_0[1,j], "1"=mass_1[1,j], stateSpace)) #
}#
#Using the modified Dempster combination to combine the prior distribution (the logistic probs)#
#with the mass values from the features #
mass_combo = dComb(masses)
stateSpace <- c("0", "1")#
masses = vector("list", 11)#
#Getting mass values for each feature of the example#
for(j in 1:11) {#
masses[[j]] <- mass(list("0"=mass_0[1,j], "1"=mass_1[1,j], stateSpace)) #
}#
#Using the modified Dempster combination to combine the prior distribution (the logistic probs)#
#with the mass values from the features #
mass_combo = dComb(masses)
stateSpace <- c("0", "1")#
masses = vector("list", 11)#
#Getting mass values for each feature of the example#
for(j in 1:11) {#
masses[[j]] <- mass(list("0"=mass_0[j], "1"=mass_1[j], stateSpace)) #
}#
#Using the modified Dempster combination to combine the prior distribution (the logistic probs)#
#with the mass values from the features #
mass_combo = dComb(masses)
length(mass_0)
length(mass_1)
masses
mass_0[1]
stateSpace <- c("0", "1")#
masses = vector("list", 11)#
#Getting mass values for each feature of the example#
for(j in 1:11) {#
masses[[j]] <- mass(list("0"=mass_0[j], "1"=mass_1[j]), stateSpace) #
}#
#Using the modified Dempster combination to combine the prior distribution (the logistic probs)#
#with the mass values from the features #
mass_combo = dComb(masses)
mass_combo
prior_dist = mass(list("0"=0.2, "1"=0.8), stateSpace)#
stateSpace <- c("0", "1")#
masses = vector("list", 11)#
#Getting mass values for each feature of the example#
for(j in 1:11) {#
masses[[j]] <- mass(list("0"=mass_0[j], "1"=mass_1[j]), stateSpace) #
}#
#Using the modified Dempster combination to combine the prior distribution (the logistic probs)#
#with the mass values from the features #
mass_combo = mComb(masses, prior_dist)
prior_dist
prior_dist@focal$0
prior_dist@focal$'0'
mass_combo = mComb(masses, list("0"=prior_dist@focal$'0', "1"=rior_dist@focal$'1'))
prior_dist = mass(list("0"=0.2, "1"=0.8), stateSpace)#
stateSpace <- c("0", "1")#
masses = vector("list", 11)#
#Getting mass values for each feature of the example#
for(j in 1:11) {#
masses[[j]] <- mass(list("0"=mass_0[j], "1"=mass_1[j]), stateSpace) #
}#
#Using the modified Dempster combination to combine the prior distribution (the logistic probs)#
#with the mass values from the features #
mass_combo = mComb(masses, list("0"=prior_dist@focal$'0', "1"=prior_dist@focal$'1'))
mass_combo
mass_0
prior_dist = mass(list("0"=0.2, "1"=0.8), stateSpace)#
stateSpace <- c("0", "1")#
masses = vector("list", 11)#
#Getting mass values for each feature of the example#
for(j in 1:11) {#
masses[[j]] <- mass(list("0"=mass_0[j], "1"=mass_1[j]), stateSpace) #
}#
#Using the modified Dempster combination to combine the prior distribution (the logistic probs)#
#with the mass values from the features #
mass_combo = mComb(masses, list("0"=prior_dist@focal$'1', "1"=prior_dist@focal$'0'))
mass_combo
prior_dist@focal$'1'
prior_dist@focal$'0'
masses
mass_combo_0 = mComb(masses, list("0"=0.2, "1"=0.8)) #
mass_combo_1 = dComb(masses)
mass_combo_0
mass_combo_1
mass_combo_0 = mComb(masses, list("0"=0.8, "1"=0.2)) #
mass_combo_1 = dComb(masses)
mass_combo_0
# state space#
stateSpace <- c("a", "b", "c")#
# mass functions#
m1 <- mass(list("a"=0.1, "a/b/c"=0.9), stateSpace)#
m2 <- mass(list("a"=0.2, "a/b/c"=0.8), stateSpace)
mComb(m1, m2, list("a"=0.1, "b"=0.1, "c"=0.8))
stateSpace <- c("0", "1")#
masses = vector("list", 11)#
#Getting mass values for each feature of the example#
for(j in 1:11) {#
masses[[j]] <- mass(list("0"=mass_0[j], "1"=mass_1[j]), stateSpace) #
}#
#Using the modified Dempster combination to combine the prior distribution (the logistic probs)#
#with the mass values from the features #
#mass_combo_0 = mComb(masses, list("0"=0.2, "1"=0.8)) #
mass_combo_1 = dComb(masses)
mass_combo_1
mass_0 = c(0.9, 0.1, 0.9, 0.1)
mass_1 = c(0.1, 0.9, 0.1, 0.9)
stateSpace <- c("0", "1")#
masses = vector("list", 11)#
#Getting mass values for each feature of the example#
for(j in 1:11) {#
masses[[j]] <- mass(list("0"=mass_0[j], "1"=mass_1[j]), stateSpace) #
}#
#Using the modified Dempster combination to combine the prior distribution (the logistic probs)#
#with the mass values from the features #
#mass_combo_0 = mComb(masses, list("0"=0.2, "1"=0.8)) #
mass_combo_1 = dComb(masses)
#prior_dist = mass(list("0"=0.2, "1"=0.8), stateSpace)#
stateSpace <- c("0", "1")#
masses = vector("list", 4)#
#Getting mass values for each feature of the example#
for(j in 1:4) {#
masses[[j]] <- mass(list("0"=mass_0[j], "1"=mass_1[j]), stateSpace) #
}#
#Using the modified Dempster combination to combine the prior distribution (the logistic probs)#
#with the mass values from the features #
#mass_combo_0 = mComb(masses, list("0"=0.2, "1"=0.8)) #
mass_combo_1 = dComb(masses)
mass_combo_1
install.packages('rmarkdown')
#time domain#
library(fpp)#
library(astsa)#
library(forecast)#
str(ausbeer)#
plot(ausbeer)#
#the mean is not constant, the first diff would be useful#
plot(diff(ausbeer))#
#the autovariance of the series looks like it depends on time, a log might help#
plot(diff(log(ausbeer)))#
#the plot of that looks better, I'll try some modeling now#
acf2(diff(log(ausbeer)))#
#definitely a seasonal component, at least one every two quarters#
#Since the seasonal compenent tails off, it probably involves an AR(P)#
#the speed (slow) of this decay suggests a seasonal difference#
auto.arima(log(ausbeer))#
#arima(1,1,2)(0,1,1)[4] interesting#
#I'll start with trying a arima(0,1,1)(0,1,1) since the inbetween seasonal parts#
#of the PACF are tailing off, a MA(q) must be involved#
sarima(log(ausbeer), 0,1,1, 0,1,1, 4)#
#ACF still looks like more than white noise, lets take a closer look#
#The ACF is cutting off after the first lag so let's try MA(2)#
sarima(log(ausbeer), 0,1,2, 0,1,1, 4)#
#the model looks great...normaility, good Ljung-Box stat, ACF looks good too#
#I'll take a closer look at the ACF and PACF to make sure it's a good fit#
good_model = sarima(log(ausbeer), 0,1,2, 0,1,1, 4)#
acf2(good_model$fit$residuals)#
#looks like all the information was captured by the model, just white noise left#
#Time to do a little forecasting...say, for the next year (2008 Q4 to 2009 Q3)#
par(mfrow=c(1,1))#
#doing the forecast and the graph of the time series w/ forecasted values#
fore_cast = sarima.for(log(ausbeer), 4, 0,1,2, 0,1,1, 4)#
#transforming the predicted values from logged values#
exp(fore_cast$pred)#
#prediction intervals#
U = exp(fore_cast$pred + fore_cast$se) #
L = exp(fore_cast$pred - fore_cast$se)#
for(i in 1:4){#
print(c(L[i],U[i])) #
}#
#frequency domain#
par(mfrow=c(1,1))#
library(itsmr)#
#have to make the series stationary to do frequency analysis#
ausbeer_sta = diff(log(ausbeer))#
#Creating the periodogram, which is a estimator of spectral density#
ausbeer.per = spec.pgram(ausbeer_sta, taper=0, log='no')#
which(ausbeer.per$spec == max(ausbeer.per$spec))#
#length that spec.pgram used#
nextn(length(ausbeer))#
#frequency is multiples of 1/4, remember only goes up to folding freq so double#
#multiply the max obs by two since the spec.pgram only goes up #
#to the folding freq#
#peaks at 1*(1/4) and 2*(1/4)#
#one cycle every four months and another every two months#
abline(v=1, lty="dotted")#
which(ausbeer.per$spec == max(ausbeer.per$spec[-(53:55)]))#
abline(v=2, lty="dotted")#
U = qchisq(0.025, 2)#
L = qchisq(0.975, 2)#
c(2*ausbeer.per$spec[54]/L, 2*ausbeer.per$spec[54]/U)#
c(2*ausbeer.per$spec[108]/L, 2*ausbeer.per$spec[108]/U)#
abline(h=2*ausbeer.per$spec[54]/L, lty="dotted", col='blue')#higher line#
abline(h=2*ausbeer.per$spec[108]/L, lty="dotted", col='red')#lower line#
#ausbeer pgram at freq 1/4 = 54/216 and 2/4 = 108/216#
#looks like both dominant frequencies are significant
install.packages('fpp')
install.packages('astsa')
install.packages('forecast')
install.packages('itsmr')
#time domain#
library(fpp)#
library(astsa)#
library(forecast)#
str(ausbeer)#
plot(ausbeer)#
#the mean is not constant, the first diff would be useful#
plot(diff(ausbeer))#
#the autovariance of the series looks like it depends on time, a log might help#
plot(diff(log(ausbeer)))#
#the plot of that looks better, I'll try some modeling now#
acf2(diff(log(ausbeer)))#
#definitely a seasonal component, at least one every two quarters#
#Since the seasonal compenent tails off, it probably involves an AR(P)#
#the speed (slow) of this decay suggests a seasonal difference#
auto.arima(log(ausbeer))#
#arima(1,1,2)(0,1,1)[4] interesting#
#I'll start with trying a arima(0,1,1)(0,1,1) since the inbetween seasonal parts#
#of the PACF are tailing off, a MA(q) must be involved#
sarima(log(ausbeer), 0,1,1, 0,1,1, 4)#
#ACF still looks like more than white noise, lets take a closer look#
#The ACF is cutting off after the first lag so let's try MA(2)#
sarima(log(ausbeer), 0,1,2, 0,1,1, 4)#
#the model looks great...normaility, good Ljung-Box stat, ACF looks good too#
#I'll take a closer look at the ACF and PACF to make sure it's a good fit#
good_model = sarima(log(ausbeer), 0,1,2, 0,1,1, 4)#
acf2(good_model$fit$residuals)#
#looks like all the information was captured by the model, just white noise left#
#Time to do a little forecasting...say, for the next year (2008 Q4 to 2009 Q3)#
par(mfrow=c(1,1))#
#doing the forecast and the graph of the time series w/ forecasted values#
fore_cast = sarima.for(log(ausbeer), 4, 0,1,2, 0,1,1, 4)#
#transforming the predicted values from logged values#
exp(fore_cast$pred)#
#prediction intervals#
U = exp(fore_cast$pred + fore_cast$se) #
L = exp(fore_cast$pred - fore_cast$se)#
for(i in 1:4){#
print(c(L[i],U[i])) #
}#
#frequency domain#
par(mfrow=c(1,1))#
library(itsmr)#
#have to make the series stationary to do frequency analysis#
ausbeer_sta = diff(log(ausbeer))#
#Creating the periodogram, which is a estimator of spectral density#
ausbeer.per = spec.pgram(ausbeer_sta, taper=0, log='no')#
which(ausbeer.per$spec == max(ausbeer.per$spec))#
#length that spec.pgram used#
nextn(length(ausbeer))#
#frequency is multiples of 1/4, remember only goes up to folding freq so double#
#multiply the max obs by two since the spec.pgram only goes up #
#to the folding freq#
#peaks at 1*(1/4) and 2*(1/4)#
#one cycle every four months and another every two months#
abline(v=1, lty="dotted")#
which(ausbeer.per$spec == max(ausbeer.per$spec[-(53:55)]))#
abline(v=2, lty="dotted")#
U = qchisq(0.025, 2)#
L = qchisq(0.975, 2)#
c(2*ausbeer.per$spec[54]/L, 2*ausbeer.per$spec[54]/U)#
c(2*ausbeer.per$spec[108]/L, 2*ausbeer.per$spec[108]/U)#
abline(h=2*ausbeer.per$spec[54]/L, lty="dotted", col='blue')#higher line#
abline(h=2*ausbeer.per$spec[108]/L, lty="dotted", col='red')#lower line#
#ausbeer pgram at freq 1/4 = 54/216 and 2/4 = 108/216#
#looks like both dominant frequencies are significant
#time domain#
library(fpp)#
library(astsa)#
library(forecast)#
str(ausbeer)#
plot(ausbeer)#
#the mean is not constant, the first diff would be useful#
plot(diff(ausbeer))#
#the autovariance of the series looks like it depends on time, a log might help#
plot(diff(log(ausbeer)))#
#the plot of that looks better, I'll try some modeling now#
acf2(diff(log(ausbeer)))#
#definitely a seasonal component, at least one every two quarters#
#Since the seasonal compenent tails off, it probably involves an AR(P)#
#the speed (slow) of this decay suggests a seasonal difference#
auto.arima(log(ausbeer))#
#arima(1,1,2)(0,1,1)[4] interesting#
#I'll start with trying a arima(0,1,1)(0,1,1) since the inbetween seasonal parts#
#of the PACF are tailing off, a MA(q) must be involved#
sarima(log(ausbeer), 0,1,1, 0,1,1, 4)#
#ACF still looks like more than white noise, lets take a closer look#
#The ACF is cutting off after the first lag so let's try MA(2)#
sarima(log(ausbeer), 0,1,2, 0,1,1, 4)#
#the model looks great...normaility, good Ljung-Box stat, ACF looks good too#
#I'll take a closer look at the ACF and PACF to make sure it's a good fit#
good_model = sarima(log(ausbeer), 0,1,2, 0,1,1, 4)#
acf2(good_model$fit$residuals)#
#looks like all the information was captured by the model, just white noise left#
#Time to do a little forecasting...say, for the next year (2008 Q4 to 2009 Q3)#
par(mfrow=c(1,1))#
#doing the forecast and the graph of the time series w/ forecasted values#
fore_cast = sarima.for(log(ausbeer), 4, 0,1,2, 0,1,1, 4)#
#transforming the predicted values from logged values#
exp(fore_cast$pred)#
#prediction intervals#
U = exp(fore_cast$pred + fore_cast$se) #
L = exp(fore_cast$pred - fore_cast$se)#
for(i in 1:4){#
print(c(L[i],U[i])) #
}#
#frequency domain#
par(mfrow=c(1,1))#
library(itsmr)#
#have to make the series stationary to do frequency analysis#
ausbeer_sta = diff(log(ausbeer))#
#Creating the periodogram, which is a estimator of spectral density#
ausbeer.per = spec.pgram(ausbeer_sta, taper=0, log='no')#
which(ausbeer.per$spec == max(ausbeer.per$spec))#
#length that spec.pgram used#
nextn(length(ausbeer))#
#frequency is multiples of 1/4, remember only goes up to folding freq so double#
#multiply the max obs by two since the spec.pgram only goes up #
#to the folding freq#
#peaks at 1*(1/4) and 2*(1/4)#
#one cycle every four months and another every two months#
abline(v=1, lty="dotted")#
which(ausbeer.per$spec == max(ausbeer.per$spec[-(53:55)]))#
abline(v=2, lty="dotted")
#time domainlibrary(fpp)library(astsa)library(forecast)str(ausbeer)plot(ausbeer)#the mean is not constant, the first diff would be usefulplot(diff(ausbeer))#the autovariance of the series looks like it depends on time, a log might helpplot(diff(log(ausbeer)))#the plot of that looks better, I'll try some modeling nowacf2(diff(log(ausbeer)))#definitely a seasonal component, at least one every two quarters#Since the seasonal compenent tails off, it probably involves an AR(P)#the speed (slow) of this decay suggests a seasonal differenceauto.arima(log(ausbeer))#arima(1,1,2)(0,1,1)[4] interesting#I'll start with trying a arima(0,1,1)(0,1,1) since the inbetween seasonal parts#of the PACF are tailing off, a MA(q) must be involvedsarima(log(ausbeer), 0,1,1, 0,1,1, 4)#ACF still looks like more than white noise, lets take a closer look#The ACF is cutting off after the first lag so let's try MA(2)sarima(log(ausbeer), 0,1,2, 0,1,1, 4)#the model looks great...normality, good Ljung-Box stat, ACF looks good too#I'll take a closer look at the ACF and PACF to make sure it's a good fitgood_model = sarima(log(ausbeer), 0,1,2, 0,1,1, 4)acf2(good_model$fit$residuals)#looks like all the information was captured by the model, just white noise left#Time to do a little forecasting...say, for the next year (2008 Q4 to 2009 Q3)par(mfrow=c(1,1))#doing the forecast and the graph of the time series w/ forecasted valuesfore_cast = sarima.for(log(ausbeer), 4, 0,1,2, 0,1,1, 4)#transforming the predicted values from logged valuesexp(fore_cast$pred)#prediction intervalsU = exp(fore_cast$pred + fore_cast$se) L = exp(fore_cast$pred - fore_cast$se)for(i in 1:4){ print(c(L[i],U[i])) }#frequency domainpar(mfrow=c(1,1))library(itsmr)#have to make the series stationary to do frequency analysisausbeer_sta = diff(log(ausbeer))#Creating the periodogram, which is an estimator of spectral densityausbeer.per = spec.pgram(ausbeer_sta, taper=0, log='no')which(ausbeer.per$spec == max(ausbeer.per$spec))#length that spec.pgram usednextn(length(ausbeer))#frequency is multiples of 1/4, remember only goes up to folding #peaks at 1*(1/4) and 2*(1/4)#one cycle every four months and another every two monthsabline(v=1, lty="dotted")which(ausbeer.per$spec == max(ausbeer.per$spec[-(53:55)]))abline(v=2, lty="dotted")
U = qchisq(0.025, 2)#
L = qchisq(0.975, 2)#
c(2*ausbeer.per$spec[54]/L, 2*ausbeer.per$spec[54]/U)#
c(2*ausbeer.per$spec[108]/L, 2*ausbeer.per$spec[108]/U)#
abline(h=2*ausbeer.per$spec[54]/L, lty="dotted", col='blue')#higher line#
abline(h=2*ausbeer.per$spec[108]/L, lty="dotted", col='red')#lower line#
#ausbeer pgram at freq 1/4 = 54/216 and 2/4 = 108/216#
#looks like both dominant frequencies are significant
ls()
getwd()
setwd('/Users/nicholaslipanovich/Documents/GitHub/MachineLearnCourseProjects')
setwd('/Users/nicholaslipanovich/Documents/GitHub/MachineLearningCourseProjects')
j = read.csv('1987')
j = read.csv('1987.csv')
length(j[,1])
h = j[800000,]
?write.csv
write.csv(h, '1987.csv')
j = read.csv('1987.csv')
length(j[,1])
j = read.csv('1987.csv')
h = j[1:800000,]
length(h[,1])
length(h[1,])
write.csv(h, '1987.csv')