-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVectors Textbook.tex
executable file
·6330 lines (4746 loc) · 144 KB
/
Vectors Textbook.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[11pt,a4paper]{book}
\usepackage{lib/Textbook}
\exhyphenpenalty=10000\hyphenpenalty=10000
%\sloppy
\usepackage{enumitem}
\usepackage{mdframed}
\usepackage{tikz}
\usepackage{nccmath}
\usepackage{wrapfig}
\usepackage{textcomp}
\usepackage{multirow}
\usepackage{tasks}
\usetikzlibrary{shapes,arrows,decorations.pathreplacing,calc,positioning,intersections}
\usepackage[export]{adjustbox}
\usepackage{chngcntr}
\usepackage{array}
\usepackage{picture}
\tikzstyle{Box} = [rectangle, minimum height=1cm, draw=black]
\tikzstyle{arrow} = [thick, ->, >=stealth]
\newlist{steps}{enumerate}{1}
\setlist[steps, 1]{label = Step \arabic*:}
\newlist{inlinelist}{enumerate*}{1}
\setlist[inlinelist]{itemjoin = \hspace{.5in}, label=(\alph*)}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\W}{\mathbb{W}}
\newcommand{\C}{\mathbb{C}}
\usepackage{ulem}
\usepackage{graphicx}
\usepackage[english]{babel}
\usepackage{lipsum}
\usepackage{xcolor}
\usepackage{tikz}
\usepackage{mathtools,amsfonts,amssymb,amsthm}
\usepackage[most]{tcolorbox}
\setlength{\parindent}{0pt}
\usepackage{fourier}
\makeatletter
\newcommand*\bigcdot{\mathpalette\bigcdot@{.5}}
\newcommand*\bigcdot@[2]{\mathbin{\vcenter{\hbox{\scalebox{#2}{$\m@th#1\bullet$}}}}}
\makeatother
\makeatletter
\newcommand{\newparallel}{\mathrel{\mathpalette\new@parallel\relax}}
\newcommand{\new@parallel}[2]{%
\begingroup
\sbox\z@{$#1T$}% get the height of an uppercase letter
\resizebox{!}{\ht\z@}{\raisebox{\depth}{$\m@th#1/\mkern-5mu/$}}%
\endgroup
}
\makeatother
\let\cleardoublepage=\clearpage
% Start document
\begin{document}
\tableofcontents
\setcounter{chapter}{12}
\chapter{Vectors in 2 and 3 Dimensions}
\section{Introduction to Vectors}
A vector represents the shortest path in space starting at some initial
point $A$ and terminating at another point $B$. Unlike a segment,
a vector is represented as an arrow, whose length indicates the distance
required to move in a straight line from $A$ to $B$, and whose arrow
head indicates the direction of the movement. Two vectors are equal
if they have the same magnitude and the same direction, irrespective
of their initial point.
\subsection{Vectors and Scalars}
\begin{center}
\tcbox[box align=base,nobeforeafter,colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]{
\begin{minipage}[t]{.72\textwidth}
Quantities which have only magnitude are called \textbf{scalars}.
\medskip{}
Quantities which have both magnitude and direction are called \textbf{vectors}.
\end{minipage}
}
\par\end{center}
The speed of an aeroplane is a scalar.
The velocity of an aeroplane is a vector. It includes both its speed
and also its direction.
Other examples of vector quantities are:
\begin{itemize}
\item Acceleration
\item Force
\item Displacement
\item Momentum
\end{itemize}
\subsection{Vector Notation}
Consider the vector from the origin $O$ to the point $A$. We call
this the position vector of point $A$.
\medskip
\begin{minipage}[t]{0.4\textwidth}
\begin{center}
\includegraphics[width=4.5cm]{\string"lib/Graphics/Vector1.2\string".png}
\par\end{center}
\end{minipage}
\begin{minipage}[t]{0.6\textwidth}
\begin{tcolorbox}[colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]
\begin{itemize}
\item This \textbf{position vector} could be represented by $\overrightarrow{OA}$\hspace{0.5cm}or\hspace{0.5cm}$\textbf{a}$\hspace{0.5cm}or\hspace{0.5cm}$\underset{\sim}{a}$.
\item The \textbf{magnitude} (length) could be represented by $\left|\overrightarrow{OA}\right|$\hspace{0.5cm}or\hspace{0.5cm}$\left|\textbf{a}\right|$\hspace{0.5cm}or\hspace{0.5cm}$\left|\underset{\sim}{a}\right|$.
\end{itemize}
\end{tcolorbox}
\end{minipage}
Now consider the vector $\overrightarrow{AB}$ which originates at
$A$ and terminates at $B$.
\medskip
\begin{minipage}[t]{0.35\textwidth}
\begin{center}
\includegraphics[width=4.5cm]{\string"lib/Graphics/Vector1.2.2\string".png}
\par\end{center}
\end{minipage}
\begin{minipage}[t]{0.62\textwidth}
\begin{tcolorbox}[colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]
We say that $\overrightarrow{AB}$ is a \textbf{displacement vector
}of $B$ relative to $A$.
\medskip{}
For example, given two position vectors $\overrightarrow{OA}$ and
$\overrightarrow{OB}$. Then $\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}$
\end{tcolorbox}
\end{minipage}
The bold text $\textbf{a}$ is used in textbooks and $\underset{\sim}{a}$
is used when writing by hand.
\subsection{Zero Vector }
A vector with magnitude $0$ is called the zero vector. It is denoted
by $\textbf{0}$ in print or $\underset{\sim}{0}$. For any vector
$\textbf{a}$, $\textbf{a}+\textbf{0}=\textbf{a}$.
\subsection{Negative Vectors}
If a vector $\textbf{a}$ has the same magnitude as a vector $\textbf{b}$
but in opposite direction to that of $\textbf{b}$, we say the vector
$\textbf{a}$ is the negative of vector $\textbf{b}$.
\begin{minipage}[t]{0.4\textwidth}
\begin{center}
\includegraphics[width=4.5cm]{\string"lib/Graphics/Vector1.3\string".png}
\par\end{center}
\end{minipage}
\begin{minipage}[t]{0.6\textwidth}
\begin{tcolorbox}[colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]
$\overrightarrow{AB}$ and $\overrightarrow{BA}$ have the same length,
but opposite directions.
\medskip{}
Thus $\overrightarrow{BA}$ is the negative of $\overrightarrow{AB}$
and we write their relation as $\overrightarrow{AB}=-\overrightarrow{BA}$.
\medskip{}
Note that the magnitude is the same for both vectors,
$\left|\textbf{a}\right|=\left|-\textbf{a}\right|$.
\end{tcolorbox}
\end{minipage}
\subsection{Unit Vector}
\begin{center}
\tcbox[box align=base,nobeforeafter,colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]{
A unit vector is a vector whose length is equal to one unit. In other words, $\left|\textbf{a}\right|=1$.
}
\par\end{center}
For example, the vector ${\displaystyle{\textbf{a}}=\frac{1}{\sqrt{3}}\begin{bmatrix}1\\
1\\
1
\end{bmatrix}}$ is a unit vector.
\[
\left|\ensuremath{\textbf{a}}\right|=\frac{1}{\sqrt{3}}\begin{bmatrix}1\\
1\\
1
\end{bmatrix}=\sqrt{\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}}=1
\]
Given a vector $\ensuremath{\textbf{a}}$, the unit vector along the
direction of $\ensuremath{\textbf{a}}$ is given by ${\displaystyle \frac{\ensuremath{\textbf{a}}}{\left|\ensuremath{\textbf{a}}\right|}}$.
We commonly use $\hat{\textbf{a}}$, read ``a cap'' to denote ${\displaystyle \frac{\ensuremath{\textbf{a}}}{\left|\ensuremath{\textbf{a}}\right|}}$.
\section{Operations of Vectors}
\subsection{Addition and Subtraction}
Two vectors can be added or subtracted geometrically by using either
the triangle rule or parallelogram rule.
\subsubsection{Triangle Rule}
\begin{minipage}[t]{0.4\textwidth}
\begin{center}
\includegraphics[width=4.5cm]{\string"lib/Graphics/VectorTRule\string".png}
\par\end{center}
\end{minipage}
\begin{minipage}[t]{0.6\textwidth}
\begin{tcolorbox}[colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]
Suppose we have two vectors $\textbf{a}$ and $\textbf{b}$.
\medskip{}
Let $\overrightarrow{AB}$ and $\overrightarrow{BC}$ represent the
vectors $\textbf{a}$ and $\textbf{b}$ respectively.
\medskip{}
Then, $\overrightarrow{AC}$ represents the sum of vectors $\textbf{a}$
and $\textbf{b}$.
\medskip{}
So, $\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}$.
\end{tcolorbox}
\end{minipage}
\subsubsection{Parallelogram Rule}
\begin{minipage}[t]{0.45\textwidth}
\begin{center}
\includegraphics[width=6cm]{\string"lib/Graphics/VectorPRule\string".png}
\par\end{center}
\end{minipage}
\begin{minipage}[t]{0.6\textwidth}
\begin{tcolorbox}[colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]
Suppose we have two vectors $\textbf{a}$ and $\textbf{b}$.
\medskip{}
Let $\overrightarrow{AB}$ and $\overrightarrow{BC}$ represent the
vectors $\textbf{a}$ and $\textbf{b}$ respectively.
\medskip{}
Then, $\overrightarrow{AC}$ represents the sum of vectors $\textbf{a}$
and $\textbf{b}$.
\medskip{}
So, $\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}$.
\end{tcolorbox}
\end{minipage}
\subsection{Scalar Multiplication}
The product of a vector $\textbf{a}$ and a scalar quantity $\lambda$,
denoted by $\lambda\textbf{a}$, is also a vector.
\begin{center}
\includegraphics[width=10cm]{\string"lib/Graphics/VectorScalarMul\string".png}
\par\end{center}
\begin{center}
\tcbox[box align=base,nobeforeafter,colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]{
\begin{minipage}[t]{.7\textwidth}
If $\textbf{a}$ is a vector and $\lambda$ is a scalar, then $\lambda\textbf{a}$ is also a vector and we are performing \textbf{scalar multiplication}.
\medskip{}
\setlength\parindent{48pt}
If $\lambda>0$, then $\lambda\textbf{a}$ and $\textbf{a}$ have the same direction.
\medskip{}
If $\lambda<0$, then $\lambda\textbf{a}$ and $\textbf{a}$ have opposite direction.
\medskip{}
If $\lambda=0$, then $\lambda\textbf{a}=\textbf{0}$.
\end{minipage}
}
\par\end{center}
\subsection{Properties of Operations }
Let $\textbf{a}$, $\textbf{b}$ and $\textbf{c}$ be vectors, and
let $\lambda$ and $\mu$ be scalar variables. We have the following
basic properties for scalar addition and scalar multiplication.
\begin{enumerate}
\item Commutative Law: $\textbf{a}+\textbf{b}=\textbf{b}+\textbf{a}$
\item Associative Law: $\left(\textbf{a}+\textbf{b}\right)+\textbf{c}=\textbf{a}+\left(\textbf{b}+\textbf{c}\right)$
\item Distributive Law:
\begin{enumerate}[label=(\roman*)]
\item $\lambda\left(\textbf{a}+\textbf{b}\right)=\lambda\textbf{a}+\lambda\textbf{b}$
\item $\left(\lambda+\mu\right)\textbf{a}=\lambda\textbf{a}+\mu\textbf{a}$
\item $\lambda\left(\mu\textbf{a}\right)=\left(\lambda\mu\right)\textbf{a}$
\end{enumerate}
\end{enumerate}
\newpage{}
\section{Vectors in Two Dimensions}
So far we have examined vectors from their geometric representation.
We have used arrows where:
\begin{itemize}
\item the length of the arrow represents size (magnitude)
\item the arrowhead indicates direction.
\end{itemize}
Here we will see how to represent vectors in\textbf{ component form}.
If we let $\textbf{i}$ and $\textbf{j}$ be unit vectors along the
positive $x-$axis and the positive $y-$axis respectively, and let
$R\left(x,y\right)$ be any point that lies on the $xy$ plane. Then
we can express the position vector $\textbf{r}=\overrightarrow{OR}$
as
\[
\textbf{r}=x\textbf{i}+y\textbf{j}
\]
\begin{minipage}[t]{0.45\textwidth}
\begin{center}
\includegraphics[width=6cm]{\string"lib/Graphics/Vectorin2D\string".png}
\par\end{center}
\end{minipage}
\begin{minipage}[t]{0.6\textwidth}
\begin{tcolorbox}[colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]
We can also write this as a row or column vector.
\medskip{}
In \textbf{row vector} form, we have $\textbf{r}=\left[x,y\right]$.
In \textbf{column vector} form, we have $\textbf{r}=\begin{bmatrix}x\\
y
\end{bmatrix}$.
Using the Pythagoras Theorem, the \textbf{magnitude} of the vector
$\overrightarrow{OR}$ is
\[
\left|\textbf{r}\right|=\sqrt{x^{2}+y^{2}}
\]
The \textbf{unit vector} along this direction is
\[
\hat{\textbf{r}}=\frac{1}{\sqrt{x^{2}+y^{2}}}\begin{bmatrix}x\\
y
\end{bmatrix}
\]
\end{tcolorbox}
\end{minipage}
\subsection{Operations of Vector in Two Dimensions}
If $\textbf{a}=\begin{bmatrix}x_{1}\\
y_{1}
\end{bmatrix}$, $\textbf{b}=\begin{bmatrix}x_{2}\\
y_{2}
\end{bmatrix}$ and $\lambda$ is a constant, then
\centerline{\begin{minipage}{.40\textwidth}
\begin{tcolorbox}[colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]
\begin{align*}
\textbf{a}+\textbf{b} & =\begin{bmatrix}x_{1}\\
y_{1}
\end{bmatrix}+\begin{bmatrix}x_{2}\\
y_{2}
\end{bmatrix}=\begin{bmatrix}x_{1}+x_{2}\\
y_{1}+y_{2}
\end{bmatrix}\\
\textbf{a}-\textbf{b} & =\begin{bmatrix}x_{1}\\
y_{1}
\end{bmatrix}-\begin{bmatrix}x_{2}\\
y_{2}
\end{bmatrix}=\begin{bmatrix}x_{1}-x_{2}\\
y_{1}-y_{2}
\end{bmatrix}\\
\textbf{a}\lambda & =\lambda\begin{bmatrix}x_{1}\\
y_{1}
\end{bmatrix}=\begin{bmatrix}\lambda x_{1}\\
\lambda y_{1}
\end{bmatrix}
\end{align*}
\end{tcolorbox}
\end{minipage}}
\newpage
\begin{example}
Given $A\left(-1,3\right)$ and $B\left(2,5\right)$ find
\begin{enumerate}[label=(\alph*)]
\item $\overrightarrow{AB}$,
\item the magnitude of $\overrightarrow{AB}$,
\item the unit vector in the direction of $\overrightarrow{AB}$.
\end{enumerate}
\newpage
\Solution
\begin{tasks}[label=(\alph*),label-width=3.5ex](3)
\task
$
\begin{aligned}[t]
\overrightarrow{AB} & =\overrightarrow{OB}-\overrightarrow{OA}\\
& =\begin{bmatrix}2\\
5
\end{bmatrix}-\begin{bmatrix}-1\\
3
\end{bmatrix}\\
& =\begin{bmatrix}3\\
2
\end{bmatrix}
\end{aligned}
$
\task
$
\begin{aligned}[t]
\left|\overrightarrow{AB}\right| & =\sqrt{3^{2}+2^{2}}\\
& =\sqrt{13}
\end{aligned}
$
\task
$
\begin{aligned}[t]
\widehat{\overrightarrow{AB}} & =\frac{\overrightarrow{AB}}{\left|\overrightarrow{AB}\right|}\\
& =\frac{1}{\sqrt{13}}\begin{bmatrix}3\\
2
\end{bmatrix}
\end{aligned}
$
\end{tasks}
\end{example}
\section{Vectors in Three Dimensions}
A vector has exactly the same meaning in three dimensions as it does
in the plane. It represents the shortest path through space starting
at some initial point $A$ and terminating at another point $B$.
When drawing the axes for three dimensional space, it is convention
to to consider $x$ and $y$ in the horizontal, and to add a $z-$axis
pointing vertically upwards.
Let $\textbf{i}$, $\textbf{j}$ and $\textbf{k}$ be unit vectors
along the positive $x-$axis, positive $y-$axis and positive $z-$axis
respectively. If $R\left(x,y,z\right)$ is any point in space, then
we can represent the position vector $\textbf{r}=\overrightarrow{OR}$
as
\[
\textbf{r}=x\textbf{i}+y\textbf{j}+z\textbf{k}
\]
\begin{minipage}[t]{0.55\textwidth}
\begin{center}
\includegraphics[width=8.5cm]{\string"lib/Graphics/Vectorin3D\string".png}
\par\end{center}
\end{minipage}
\begin{minipage}[t]{0.50\textwidth}
\begin{tcolorbox}[colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]
In \textbf{row vector} form, we have $\textbf{r}=\left[x,y,z\right]$.
In \textbf{column vector} form, we have $\textbf{r}=\begin{bmatrix}x\\
y\\
z
\end{bmatrix}$.
The \textbf{magnitude} of the vector $\overrightarrow{OR}$ is
\[
\left|\textbf{r}\right|=\sqrt{x^{2}+y^{2}+z^{2}}
\]
The \textbf{unit vector} along this direction is
\[
\hat{\textbf{r}}=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\begin{bmatrix}x\\
y\\
z
\end{bmatrix}
\]
\end{tcolorbox}
\end{minipage}
\newpage
\begin{example}
The position vectors of $A$, $B$ and $C$ relative to the origin
$O$ are $\textbf{a}=2\textbf{i}-\textbf{j}+\textbf{k}$ and $\textbf{b}=3\textbf{i}+5\textbf{j}-4\textbf{k}$
and $\textbf{c}=4\textbf{i}+\textbf{j}$
\begin{enumerate}[label=(\alph*)]
\item $\overrightarrow{AB}$,
\item the magnitude of $\overrightarrow{AB}$,
\item the position vector of $D$ if $ABCD$ forms a parallelogram,
\item the position vector $E$ such that $\overrightarrow{BE}=3\overrightarrow{AC}$.-
\end{enumerate}
\Solution
\begin{enumerate}[label=(\alph*)]
\item
\begin{align*}
\overrightarrow{AB} & =\overrightarrow{OB}-\overrightarrow{OA}\\
& =\begin{bmatrix}3\\
5\\
-4
\end{bmatrix}-\begin{bmatrix}2\\
-1\\
1
\end{bmatrix}\\
& =\begin{bmatrix}1\\
6\\
-5
\end{bmatrix}
\end{align*}
\item
\begin{align*}
\left|\overrightarrow{AB}\right| & =\sqrt{1^{2}+6^{2}+\left(-5\right)^{2}}\\
& =\sqrt{62}
\end{align*}
\item Given $ABCD$ forms a parallelogram, then $\overrightarrow{AB}=\overrightarrow{DC}$.
\begin{align*}
\overrightarrow{DC} & =\overrightarrow{OC}-\overrightarrow{OD}\\
\overrightarrow{AB} & =\overrightarrow{OC}-\overrightarrow{OD}\\
\begin{bmatrix}1\\
6\\
-5
\end{bmatrix} & =\begin{bmatrix}4\\
1\\
0
\end{bmatrix}-\overrightarrow{OD}\\
\overrightarrow{OD} & =\begin{bmatrix}3\\
-5\\
5
\end{bmatrix}
\end{align*}
\item Given that $\overrightarrow{BE}=3\overrightarrow{AC}$,
\begin{align*}
\overrightarrow{OE}-\overrightarrow{OB} & =3\overrightarrow{AC}\\
\overrightarrow{OE}-\begin{bmatrix}3\\
5\\
-4
\end{bmatrix} & =3\begin{bmatrix}2\\
2\\
-1
\end{bmatrix}\\
\overrightarrow{OE} & =\begin{bmatrix}9\\
11\\
-7
\end{bmatrix}
\end{align*}
\end{enumerate}
\end{example}
\newpage
\section{Ratio Theorem \& Collinear Points}
\subsection{Ratio Theorem }
The diagram shows point $P$ divides the line segment $AB$ internally
in the ratio $\lambda:\mu$. Let $\textbf{a}$, $\textbf{b}$ and
$\textbf{p}$ be the position vectors of $A$, $B$ and $P$ relative
to the origin respectively.
\begin{minipage}[t]{0.5\textwidth}
\begin{fleqn}
Proof:
\begin{align*}
\frac{\left|\overrightarrow{AP}\right|}{\left|\overrightarrow{PB}\right|} & =\frac{\lambda}{\mu}\\
\mu\left|\overrightarrow{AP}\right| & =\lambda\left|\overrightarrow{PB}\right|
\end{align*}
$\overrightarrow{AP}$ and $\overrightarrow{PB}$ have the same direction,
thus
\begin{align*}
\mu\overrightarrow{AP} & =\lambda\overrightarrow{PB}\\
\mu\left(\overrightarrow{OP}-\overrightarrow{OA}\right) & =\lambda\left(\overrightarrow{OB}-\overrightarrow{OP}\right)\\
\overrightarrow{OP}\left(\mu+\lambda\right) & =\mu\overrightarrow{OA}+\lambda\overrightarrow{OB}\\
\overrightarrow{OP} & =\frac{\mu\overrightarrow{OA}+\lambda\overrightarrow{OB}}{\mu+\lambda}\\
& =\frac{\mu\textbf{a}+\lambda\textbf{b}}{\mu+\lambda}
\end{align*}
\end{fleqn}
\end{minipage}
\begin{minipage}[t]{0.1\textwidth}
\begin{center}
\includegraphics[width=7cm]{\string"lib/Graphics/VectorRatioTheorem\string".png}
\par\end{center}
\end{minipage}
\begin{tcolorbox}[colback=blue!5, colframe=black, boxrule=.4pt, sharpish corners]
The ratio theorem states that the point $P$ dividing $AB$ in the
ratio $\lambda:\mu$ has the position vector
\[
\textbf{p}=\frac{\mu\textbf{a}+\lambda\textbf{b}}{\mu+\lambda}
\]
If $P$ is the midpoint of $AB$, i.e. $\lambda=\mu=1$, then
\[
\textbf{p}=\frac{1}{2}\left(\textbf{a}+\textbf{b}\right)
\]
\end{tcolorbox}
When using the ratio theorem,
\begin{itemize}
\item all three vectors must be pointing outwards or inwards form
a common point,
\item the common point need not necessarily be the origin.
\end{itemize}
\newpage
\begin{example}
The points $A$, $B$ have coordinates $\left(2,3,-4\right)$ and
$\left(5,-1,2\right)$ respectively. Find the position vector of $P$
on $AB$ if $AP:PB=2:1$.
\Solution
\begin{minipage}[t]{0.5\textwidth}
By the ratio theorem,
\begin{align*}
\overrightarrow{OP} & =\frac{\textbf{a}+2\textbf{b}}{3}\\
& =\frac{1}{3}\left(\begin{bmatrix}2\\
3\\
-4
\end{bmatrix}+2\begin{bmatrix}5\\
-1\\
2
\end{bmatrix}\right)\\
& =\frac{1}{3}\begin{bmatrix}12\\
1\\
0
\end{bmatrix}\\
& =\begin{bmatrix}4\\
\frac{1}{3}\\
0
\end{bmatrix}
\end{align*}
\end{minipage}
\begin{minipage}[t]{0.1\textwidth}
\begin{center}
\includegraphics[width=7cm]{\string"lib/Graphics/VectorExample3\string".png}
\par\end{center}
\end{minipage}
\end{example}
\subsection{Collinear Points}
Two vectors are collinear, if they lie on the same line or parallel
lines.
If $\overrightarrow{AB}$ is collinear to $\overrightarrow{BC}$,
then $\overrightarrow{AB}=\lambda\overrightarrow{BC}$, $\lambda\in\R$
and $\lambda\neq0$.
\begin{center}
\includegraphics[width=7cm]{\string"lib/Graphics/VectorCollinear\string".png}
\par\end{center}
\begin{example}
The position vectors of the points $A$, $B$ and $C$ are given by
$\textbf{a}=2\textbf{i}+3\textbf{j}-4\textbf{k}$, $\textbf{b}=5\textbf{i}-\textbf{j}+2\textbf{k}$
and $\textbf{c}=11\textbf{i}+\lambda\textbf{j}+14\textbf{k}$ respectively.
Find the value of $\lambda$ if $A$, $B$ and $C$ are collinear.
\Solution
Given that $A$, $B$ and $C$ are collinear, $\overrightarrow{AB}=\mu\overrightarrow{BC}$.
Finding $\overrightarrow{AB}$,
\begin{align*}
\overrightarrow{AB} & =\overrightarrow{OB}-\overrightarrow{OA}\\
& =\begin{bmatrix}5\\
-1\\
2
\end{bmatrix}-\begin{bmatrix}2\\
3\\
-4
\end{bmatrix}\\
& =\begin{bmatrix}3\\
-4\\
6
\end{bmatrix}
\end{align*}
Finding $\overrightarrow{BC}$,
\begin{align*}
\overrightarrow{BC} & =\overrightarrow{OC}-\overrightarrow{OB}\\
& =\begin{bmatrix}11\\
\lambda\\
14
\end{bmatrix}-\begin{bmatrix}5\\
-1\\
2
\end{bmatrix}\\
& =\begin{bmatrix}6\\
\lambda+1\\
12
\end{bmatrix}
\end{align*}
Thus,
\[
\begin{bmatrix}3\\
-4\\
6
\end{bmatrix}=\mu\begin{bmatrix}6\\
\lambda+1\\
12
\end{bmatrix}
\]
By equating the $x$, $y$ and $z$ components we have
\begin{align*}
3 & =6\mu\tag{1}\\
-4 & =\mu\left(\lambda+1\right)\tag{2}\\
6 & =12\mu\tag{3}
\end{align*}
From $\left(1\right)$ and $\left(3\right)$, we have ${\displaystyle \mu=\frac{1}{2}}$.
Putting ${\displaystyle \mu=\frac{1}{2}}$ into $\left(2\right)$,
\begin{align*}
-4 & =\frac{1}{2}\left(\lambda+1\right)\\
-8 & =\lambda+1\\
\lambda & =-9
\end{align*}
\end{example}
\section{Dot (Scalar) Product }
The dot product (also known as the scalar product) of vectors $\textbf{a}$
and $\textbf{b}$ is written $\textbf{a}\bigcdot\textbf{b}$ and is
defined as follows:
\begin{center}
If $\textbf{a}=\begin{bmatrix}x_{1}\\
y_{1}
\end{bmatrix}$ and $\textbf{b}=\begin{bmatrix}x_{2}\\
y_{2}
\end{bmatrix}$, then $\textbf{a}\bigcdot\textbf{b}=x_{1}x_{2}+y_{1}y_{2}$
\par\end{center}
The scalar product is called that because the result is a scalar number,
not a vector. It\textquoteright s also called the dot product because
the operation is written with a dot between the two vectors.
If the vectors are in three dimensions, the scalar product also includes
the product of their $z-$coordinate values.
\begin{center}
If $\textbf{a}=\begin{bmatrix}x_{1}\\
y_{1}\\
z_{1}
\end{bmatrix}$ and $\textbf{b}=\begin{bmatrix}x_{2}\\
y_{2}\\
z_{2}
\end{bmatrix}$, then $\textbf{a}\bigcdot\textbf{b}=x_{1}x_{2}+y_{1}y_{2}+z_{1}z_{2}$
\par\end{center}
An alternate definition of the dot product is
\[
\textbf{a}\bigcdot\textbf{b}=\left|\textbf{a}\right|\left|\textbf{b}\right|\cos\theta
\]
This definition will come in handy when we discuss \textbf{vector
projection} and how to find the\textbf{ angle between vectors}.
\subsection{Properties of The Dot Product}
Let $\textbf{a}$, $\textbf{b}$ and $\textbf{c}$ be vectors, and
let $\lambda$ be a scalar variable. We have the following properties
of dot product.
\begin{enumerate}
\item $\textbf{a}\bigcdot\textbf{b}=\textbf{b}\bigcdot\textbf{a}$
(Commutative Law)
\item $\textbf{a}\bigcdot\left(\textbf{b}+\textbf{c}\right)=\textbf{a}\bigcdot\textbf{b}+\textbf{a}\bigcdot\textbf{c}$
(Distributive Law)
\item $\lambda\left(\textbf{a}\bigcdot\textbf{b}\right)=\left(\lambda\textbf{a}\right)\bigcdot\textbf{b}=\textbf{a}\bigcdot\left(\lambda\textbf{b}\right)$
\item $\textbf{a}\bigcdot\textbf{a}=\left|\textbf{a}\right|^{2}$
\item $\textbf{a}\bigcdot\textbf{0}=0$
\item When $\textbf{a}\perp\textbf{b}$, then $\textbf{a}\bigcdot\textbf{b}=0$
\item If $\textbf{a}\newparallel\textbf{b}$, in the same direction,
then $\textbf{a}\bigcdot\textbf{b}=\left|\textbf{a}\right|\left|\textbf{b}\right|$
\item If $\textbf{a}\newparallel\textbf{b}$, in the opposite direction,
then $\textbf{a}\bigcdot\textbf{b}=-\left|\textbf{a}\right|\left|\textbf{b}\right|$
\end{enumerate}
\begin{example}
Given that $\textbf{a}=2\textbf{i}+\textbf{j}-3\textbf{k}$ and $\textbf{b}=-2\textbf{i}+4\textbf{j}+\textbf{k}$.
\begin{enumerate}[label=(\alph*)]
\item Find $\textbf{a}\bigcdot\textbf{b}$.
\item If $\textbf{c}=\textbf{i}+\lambda\textbf{j}+3\textbf{k}$,
find the value of $\lambda$ such that $\textbf{a}$ is perpendicular
to $\textbf{c}$.
\end{enumerate}
\Solution
\begin{tasks}[label=(\alph*),label-width=3.5ex](2)
\task
$
\begin{aligned}[t]
\textbf{a}\bigcdot\textbf{b} & =\begin{bmatrix}2\\
1\\
-3
\end{bmatrix}\bigcdot\begin{bmatrix}-2\\
4\\
1
\end{bmatrix}\\
& =-4+4-3\\
& =-3
\end{aligned}
$
\task Since $\textbf{a}\perp\textbf{c}$, $\textbf{a}\bigcdot\textbf{c}=0$,
$
\begin{aligned}[t]
\begin{bmatrix}2\\
1\\
-3
\end{bmatrix}\bigcdot\begin{bmatrix}1\\
\lambda\\
3
\end{bmatrix} & =0\\
2+\lambda-9 & =0\\
\lambda & =7
\end{aligned}
$
\end{tasks}
\end{example}
\newpage
\subsection{Length of Projection}
\begin{minipage}[t]{0.75\textwidth}
The diagram shows two position vectors $\textbf{a}$ and $\textbf{b}$.
If $C$ is the foot of the perpendicular from the line $OB$ to the
point $A$, then $OC$ is called the length of projection of a vector
$\textbf{a}$ onto $\textbf{b}$.
\[
\text{Length of projection of }\textbf{a}\text{ onto }\textbf{b}=\frac{\left|\textbf{a}\bigcdot\textbf{b}\right|}{\left|\textbf{b}\right|}
\]
\subsection{Vector Projection}
From the diagram, the vector projection of $\textbf{a}$ onto $\textbf{b}$
refers to the vector $\overrightarrow{OC}$.
\[
\text{Vector projection of }\textbf{a}\text{ onto }\textbf{b}=\frac{\textbf{a}\bigcdot\textbf{b}}{\left|\textbf{b}\right|^{2}}\textbf{b}
\]
\end{minipage}
\begin{minipage}[t]{0.1\textwidth}
\begin{center}
\includegraphics[width=5cm]{\string"lib/Graphics/LengthofProj\string".png}
\par\end{center}
\end{minipage}
\begin{example}
Given that $\textbf{a}=\begin{bmatrix}2\\
3\\
1
\end{bmatrix}$ and $\textbf{b}=\begin{bmatrix}-1\\
0\\
-3
\end{bmatrix}$, find