-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPure Mathematics Textbook.tex
executable file
·5322 lines (3657 loc) · 145 KB
/
Pure Mathematics Textbook.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[11pt,a4paper]{book}
\usepackage{lib/Textbook}
\exhyphenpenalty=10000\hyphenpenalty=10000
%\sloppy
\usepackage{enumitem}
\usepackage{mdframed}
\usepackage{tikz}
\usepackage{nccmath}
\usepackage{wrapfig}
\usepackage{textcomp}
\usepackage{multirow}
\usepackage{tasks}
\usetikzlibrary{shapes,arrows,decorations.pathreplacing,calc,positioning,intersections}
\usepackage[export]{adjustbox}
\usepackage{chngcntr}
\usepackage{array}
\usepackage{picture}
\tikzstyle{Box} = [rectangle, minimum height=1cm, draw=black]
\tikzstyle{arrow} = [thick, ->, >=stealth]
\newlist{steps}{enumerate}{1}
\setlist[steps, 1]{label = Step \arabic*:}
\newlist{inlinelist}{enumerate*}{1}
\setlist[inlinelist]{itemjoin = \hspace{.5in}, label=(\alph*)}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\W}{\mathbb{W}}
\newcommand{\C}{\mathbb{C}}
\usepackage{ulem}
\usepackage{graphicx}
\usepackage[english]{babel}
\usepackage{lipsum}
\usepackage{xcolor}
\usepackage{tikz}
\usepackage{mathtools,amsfonts,amssymb,amsthm}
\usepackage[most]{tcolorbox}
\usepackage{cancel}
\setlength{\parindent}{0pt}
\usepackage{fourier}
\makeatletter
\newcommand*\bigcdot{\mathpalette\bigcdot@{.5}}
\newcommand*\bigcdot@[2]{\mathbin{\vcenter{\hbox{\scalebox{#2}{$\m@th#1\bullet$}}}}}
\makeatother
\makeatletter
\newcommand{\newparallel}{\mathrel{\mathpalette\new@parallel\relax}}
\newcommand{\new@parallel}[2]{%
\begingroup
\sbox\z@{$#1T$}% get the height of an uppercase letter
\resizebox{!}{\ht\z@}{\raisebox{\depth}{$\m@th#1/\mkern-5mu/$}}%
\endgroup
}
\makeatother
% Von Koch Snowflake
\usetikzlibrary{lindenmayersystems}
\tikzset{
Koch curve/.style = {
l-system={
rule set={F -> F-F++F-F},
axiom=F++F++F,
step=1pt,
angle=60,
#1
}
}
}
\let\cleardoublepage=\clearpage
% Start document
\begin{document}
\tableofcontents
\chapter{Functions}
\vspace{-.7cm}
\section[Set Notation (O-Level Revision)]{Set Notation}
\subsection{Definition of a Set}
\centerline{\begin{minipage}{.73\textwidth}
\begin{tcolorbox}[colback=blue!5, colframe=black,boxrule=.4pt, sharpish corners]
A \textbf{set} is a well-defined collection of numbers or objects called \textbf{elements}.
\end{tcolorbox}
\end{minipage}}
\medskip
Sets can be defined in various ways. The simplest is by listing the elements enclosed between curly brackets or “braces” \{ \}. We generally use uppercase letters to denote sets and lowercase letters to denote elements.
The elements contained in a given set need not have anything in common (other than the fact that they all belong to the given set). There is also no restriction on the number of elements allowed in a set; there may be an infinite number, a finite number, or even no elements at all.
\medskip
\centerline{\begin{minipage}{.66\textwidth}
\begin{tcolorbox}[colback=blue!5, colframe=black,boxrule=.4pt, sharpish corners]
The set $\left\{ \;\right\} $ or $\text{\O}$ is called the \textbf{empty set} and contains no elements.
\end{tcolorbox}
\end{minipage}}
\medskip
There is, however, one restriction: given a set and an object, we should be able to decide whether or not the object belongs to the set. This is what is meant by a “well-defined” collection. Thus, “the set of all tall people” is \textit{not} a set, whereas “the set of all people taller than $2\,\text{m}$” is a set.
\begin{itemize}
\setlength\itemsep{0em}
\item $A=\left\{\ldots,-4,-2,0,2,4,\ldots\right\} $\\
This is the set of even numbers. We clearly cannot list all the elements.
Instead we list enough elements to establish a pattern and use ``$\ldots$'' to indicate that the \textit{implied pattern} continues indefinitely.
\item $B=\left\{ 1,\left\{ 2,3\right\} \right\} $\\
Sets can contain other sets. $B$ is a set with two elements: the
number $1$ and the set $\left\{ 2,3\right\} $.
\item $C=\left\{ \;\right\} $ \\
Here we see an empty set.
\end{itemize}
We use the symbol $\in$ to mean \textit{is an element of }and $\not\in$
to mean \textit{is not an element of.}
So, for the set $D=\left\{ 1,2,3,4,5\right\} $, we can say $4\in D$
but $7\not\in D$.
\subsection{Common Number Sets}
The following is a list of some common number sets you should be familiar
with:
\begin{itemize}
\item $\N=\left\{ 1,2,3\ldots\right\} $
\item $\W=\left\{ 0,1,2,3,\ldots\right\} $
\item $\Z=\left\{ \ldots,-2,-1,0,1,2,\ldots\right\} $
\item $\Z^{+}=\left\{ 1,2,3,\ldots\right\} $
\item $\Z^{-}=\left\{ -1,-2,-3,\ldots\right\} $
\item ${\displaystyle \Q=\left\{ \frac{a}{b}\mid a,b\in\Z,b\neq0\right\} }$
\item $\R$ is the set of all real numbers, which are all numbers which
can be placed on the number line.
\end{itemize}
\newpage
\subsection{Subsets}
\begin{center}
\tcbox[colback=blue!5, colframe=black,boxrule=.4pt, sharpish corners]{
\begin{minipage}[t]{.7\textwidth}
Suppose $A$ and $B$ are two sets. $A$ is a \textbf{subset} of $B$ if every element of $A$ is also an element of $B$. We write $A\subseteq B$.
\end{minipage}}
\par\end{center}
For example, $\left\{ 2,3,5\right\} \subseteq\left\{ 1,2,3,4,5,6\right\} $
as every element in the first set is also in the second set.
\begin{center}
\tcbox[colback=blue!5, colframe=black,boxrule=.4pt, sharpish corners]{
\begin{minipage}[t]{.76\textwidth}
$A$ is a \textbf{proper subset} of $B$ if $A$ is a subset of $B$ but is not equal to $B$. We write $A\subset B$.
\end{minipage}}
\par\end{center}
For example, $\Z\subset\Q$ since any integer ${\displaystyle n=\frac{n}{1}\in\Q}$.
However, $\Z\neq\Q$ because there are elements of $\Q$ that are
not in $\Z$, e.g. ${\displaystyle \frac{1}{2}}$.
We use $A\not\subseteq B$ to indicate that $A$ is \textit{not} a
subset of $B$.
We use $A\not\subset B$ to indicate that $A$ is \textit{not} a proper
subset of $B$.
\section{Set Builder Notation}
To avoid having to list all members of a set, we often use a general
description of its members. We often describe a set of all values
of $x$ with a particular property.
The notation $\left\{ x:\ldots\right\} $ or $\left\{ x\mid\ldots\right\} $
is used to describe ``the set of all $x$ such that ...''
For example:
\begin{itemize}
\item $A=\left\{ x\in\Z:-2\leq x\leq4\right\} $ reads ``the set of all
integers $x$ such that $x$ is in between $-2$ and $4$, including
$-2$ and $4$.
\item $A=\left\{ x\in\R:-2\leq x<4\right\} $ reads ``the set of all real
values of $x$ such that $x$ is greater than or equal to $-2$ and
less than $4$.
\end{itemize}
\subsection{Closed and Open Intervals}
\begin{center}
\tcbox[colback=blue!5, colframe=black,boxrule=.4pt, sharpish corners]{
\begin{minipage}[t]{.65\textwidth}
An interval is a connected subset of the number line $\R$. \\
\begin{itemize}
\item An interval is \textbf{closed} if both of its endpoints are included.
\item An interval is \textbf{open} if both of its endpoints are \textit{not} included.
\end{itemize}
\end{minipage}}
\par\end{center}
For $x\in \R$ , we commonly use the following notation to concisely
write intervals:
\begin{align*}
[a,b]\:\text{represents the closed interval\;} & \qquad\left\{ x\in \R:a\leq x\leq b\right\} \\{}
[a,b)\:\text{represents the interval\hspace{1.1cm}} & \qquad\left\{ x\in \R:a\leq x<b\right\} \\
(a,b]\:\text{represents the interval}\hspace{1.1cm} & \qquad\left\{ x\in \R:a<x\leq b\right\} \\
(a,b)\:\text{represents the open interval\hspace{0.2cm}} & \qquad\left\{ x\in \R:a<x<b\right\}
\end{align*}
An interval which extends to infinity has no defined endpoint. So,
for $\left\lbrace x\in\R:x\geq a\right\rbrace $, we write $[a,\infty)$.
This interval notation will be most useful to us in the following sections as we will be considering \textbf{real functions}. That is, we are interested in a function that accepts a real number input from an interval on the real number line to give a real number output.
\newpage
\section{Definition of a Function}
\begin{tcolorbox}[colback=blue!5, colframe=black,boxrule=.4pt, sharpish corners]
In mathematics a \textbf{relation }is a correspondence or rule that assigns each element in the set $X$ to one or more elements from a second set $Y$.
\medskip{}
A \textbf{function} $f:X\mapsto Y$ is a relation that assigns
each element in $X$ to\textit{ exactly one} element in $Y$.
\medskip{}
The set $X$ is called the \textbf{domain} of $f$, denoted by $D_{f}$, and
the set $Y$ is called the \textbf{codomain} of $f$.
\end{tcolorbox}
We can see from these definitions that a function is a special type of relation. Every function is a relation, but not every relation is a function. An equation will only be a function if, for any $x$ in the domain of the equation, the equation will yield exactly one value of $y$.
For example,
\begin{enumerate}[label=(\alph*)]
\item $x^{2}+y^{2}=4$ is a relation, but not a function
\item $y=x^{2}+x+3,\,x\in\R$ is a relation and a function
\end{enumerate}
The diagram below shows a mapping of the set $X$ to the set $Y$.
\begin{center}
\includegraphics[width=3.5cm]{\string"lib/Graphics/FunctionsMapping1\string".png}
\par\end{center}
We can see that each element of $X$ corresponds to exactly one element of $Y$, thus we say that this is a mapping of a function with a \textit{domain} $X=\{1,2,3\}$ and \textit{codomain} $Y=\left\{ A,B,C,D\right\} $. The \textit{range} is the set $\left\{ A,B,D\right\} $, which is also sometimes called the image of $f$. The range of $f$ will always be a subset of the codomain of $f$.
Below we see another mapping with the same set $X$ and set $Y$ as
before.
\begin{center}
\includegraphics[width=3.5cm]{\string"lib/Graphics/FunctionsMapping2\string".png}
\par\end{center}
This diagram however does \textit{not} define a function. There are
two reasons. One reason is that the element $1$ is mapped to more than one element in $Y$. Another reason is that the element $3$ in $X$ does not correspond to any element in $Y$. Either of these reasons are sufficient by themselves to conclude that this mapping does not define a function.
\medskip{}
For A-Levels, most functions considered are relations between real numbers, where the rule can be stated algebraically. It is not necessary to state the codomain and it suffices to represent a function by defining its rule and domain. We will take the range of $f$ to be the codomain of $f$.
A function $f$ can be expressed algebraically as
\[
f:x\mapsto f\left(x\right),\,x\in X
\]
where $f\left(x\right)$ is the rule of the function $f$, and the
set $X$ is the domain of the function $f$.
\newpage
\section{Graphical Representation of Functions (Vertical Line Test)}
\subsection{Graphing Functions}
Given a function $f$ from a domain set $D$ to a range set $R$, we will often use $x$ to refer to elements from $D$ and $y$ to refer to elements from $R$. For our purposes, we will write out the rule for our function as: $y=f(x)$, read \textquotedblleft y equals f of x\textquotedblright . To draw a graph of a function $f$ we plot all sets of ordered pairs $\left(x,y\right)$ on a Cartesian plane.
For example, below we see the graph for the function
\[
f\left(x\right)=\left(x-1\right)^{2}+1,\:x\in\R\text{, \ensuremath{0\leq x\leq3}}
\]
\begin{center}
\includegraphics[width=5.5cm]{\string"lib/Graphics/FunctionGraph1\string".png}
\par\end{center}
Graphing our function is useful as it gives us a picture of the domain
of $f$ on the $x-$axis and its range on the $y-$axis. In this example
we can see that the domain of the function $f$ is $[0,3]$ while
the range of the function is $\left[1,5\right]$.
However, not all graphs represent functions, one such example is illustrated
below.
Consider the equation of a circle $y^{2}+x^{2}=4$.
\begin{center}
\includegraphics[width=6.5cm]{\string"lib/Graphics/FunctionGraph2\string".png}
\par\end{center}
Taking the value of $y$ at $x=1$, we get two values of $y$: $y=\sqrt{3}$
and $y=-\sqrt{3}$. Front the definition of the function, we say that
the graph of $y^{2}+x^{2}=4$ is not a function.
\newpage
\subsection{Rule, Domain and Range of a Function}
\centerline{\begin{minipage}{.54\textwidth}
\begin{tcolorbox}[colback=blue!5, colframe=black,boxrule=.4pt, sharpish corners]
A function is defined by both its \textbf{rule and domain}.
\end{tcolorbox}
\end{minipage}}
\medskip{}
If the domain of a function is not given explicitly in the question,
the convention is that the domain is the set of all real numbers for
which the rule defines a function.
\begin{center}
For example, let ${\displaystyle f\left(x\right)=\frac{1}{x}}$. If
the domain is not specified then take $D_{f}$ to be $x\in\R,x\neq0$.
\par\end{center}
This choice of domain is also known as the \textbf{maximal domain}
of a function.
Two functions with the \textit{same rule} but \textit{different domains}
are \textbf{different} functions.
For instance consider
\begin{align*}
f & :x\mapsto x^{2},\:x\in\R\\
g & :x\mapsto x^{2},\:-1<x\leq1
\end{align*}
Even though the rules are the same, the domains $D_{f}$ and $D_{g}$
are different. This has implications on how the corresponding graphs
will look.
\begin{center}
\begin{tabular}{>{\centering}p{5cm}>{\centering}p{5cm}}
\includegraphics[width=4.5cm]{\string"lib/Graphics/FunctionDiffDomain1\string".png} & \includegraphics[width=4.5cm]{\string"lib/Graphics/FunctionDiffDomain2\string".png}\tabularnewline
\end{tabular}
\par\end{center}
\medskip{}
\centerline{\begin{minipage}{.68\textwidth}
\begin{tcolorbox}[colback=blue!5, colframe=black,boxrule=.4pt, sharpish corners]
The \textbf{range} of a function is the set of all output values of
a function.
\end{tcolorbox}
\end{minipage}}
\medskip{}
In the example above, the range of $f\left(x\right)$ is $\left[0,\infty\right)$ and the range of $g\left(x\right)$ is $\left[0,1\right]$.
\subsection{Graphical Method to Find The Range of a Function}
One of the more commonly used methods to find the range of a function is by sketching its graph, $y=f\left(x\right)$, where $x\in D_{f}$. When sketching graphs, one should take note of characteristics such as symmetry, intersections with the axes, turning points and asymptotes.
\medskip{}
A graphic calculator is a useful tool in sketching graphs. However,
it has certain limitations. For example, it does not show the asymptotes, and it also does not label the critical features of the graph (which we need to do when we sketch it). Thus it is useful to be acquainted with the equations of common functions and understand the properties of their graphs.
\medskip{}
Nevertheless, our first step when sketching a graph should always be to plot in on our GC so that we have a rough idea of what it looks like.
\newpage
\begin{example}{}
With the help of your GC, sketch the graphs of the following functions and state its range.
\begin{tasks}[label=(\alph*),label-width=3.5ex](2)
\task $f\left(x\right)=x^{2}-8x,\,x\in\R,\,1\leq x\leq10$
\task $g\left(x\right)=\left|\ln x\right|,\,x\in\R^{+}$
\task $h\left(x\right)=1+\mathrm{e}^{x},x\in\R$
\task $k\left(x\right)=\begin{cases}
x^{2}, & x\leq0\\
x-1, & x>0
\end{cases}$
\end{tasks}
\textbf{Solution}
\begin{tasks}[label=(\alph*),label-width=3.5ex](2)
\task \includegraphics[width=5cm,valign=t]{\string"lib/Graphics/FunctionsRange1\string".png}
$R_{f}=\left[-16,20\right]$
\task \includegraphics[width=5cm,valign=t]{\string"lib/Graphics/FunctionsRange2\string".png}
$R_{g}=\left[0,\infty\right)$
\task \includegraphics[width=5cm,valign=t]{\string"lib/Graphics/FunctionsRange3\string".png}
$R_{h}=\left(1,\infty\right)$
\task \includegraphics[width=5cm,valign=t]{\string"lib/Graphics/FunctionsRange4\string".png}
$R_{k}=\left(-1,\infty\right)$
\end{tasks}
\end{example}
\newpage
\subsection{Vertical Line Test}
The \textbf{vertical line test} is a \textbf{graphical method} used to determine whether a given curve is a function.
\medskip{}
\begin{tcolorbox}[colback=blue!5, colframe=black,boxrule=.4pt, sharpish corners]
A relation $f$ is a function if and only if every vertical line $x=a$, where $a\in D_{f}$, cuts the graph of $y=f(x)$ at \textbf{exactly one point}.
\end{tcolorbox}
\begin{example}{}
From the graph of each of the following relations, determine whether
the relation is a function. State your reason(s).
\textbf{Solution}
\begin{minipage}[t]{0.6\textwidth}
\begin{enumerate}[label=(\alph*)]
\item $y=\left(x-2\right)^{2},\:x\in\R$. \\
From the diagram, we can see that any vertical line $x=a$, where
$a\in\R$, cuts the graph of $y=\left(x-2\right)^{2}$ at exactly
one point.\\
Thus the equation $y=\left(x-2\right)^{2}$ is a function.
\vspace{3.5cm}
\item$y=\sqrt{x},\:x\geq0$.\\
From the diagram, we can see that any vertical line $x=a$, where
$a\geq0$, cuts the graph of $y=\sqrt{x}$ at exactly one point on
the defined domain.\\
Thus the equation $y=\sqrt{x}$ is a function.
\vspace{3.5cm}
\item$y^{2}=x,\:x\geq0$.\\
From the diagram, we can see that any vertical line $x=a$, where
$a>0$, cuts the graph of $y^{2}=x$ at two points.\\
Thus the equation $y^{2}=x$ is not a function.
\end{enumerate}
\end{minipage}
\begin{minipage}[t]{0.1\textwidth}
\begin{center}
\includegraphics[width=5cm]{\string"lib/Graphics/VerticalTest1\string".png}
\par\end{center}
\begin{center}
\includegraphics[width=5cm]{\string"lib/Graphics/VerticalTest2\string".png}
\par\end{center}
\begin{center}
\includegraphics[width=5cm]{\string"lib/Graphics/VerticalTest3\string".png}
\par\end{center}
\end{minipage}
\end{example}
\newpage
\section{One-to-One Functions (Horizontal Line Test)}
A one-to-one function, also known as an injective function, is a function that maps distinct elements of its domain to distinct elements in its codomain.
To determine whether a function is one-to-one, we use the \textbf{horizontal line test}.
\medskip{}
\begin{tcolorbox}[colback=blue!5, colframe=black,boxrule=.4pt, sharpish corners]
A function $f$ is one-to-one, if and only if every horizontal line $y=b$,
where $b\in R_{f}$, cuts the graph of $y=f(x)$ at exactly one point.
\end{tcolorbox}
If any horizontal line $y=b$ intersects the graph at more than one point, the function is \textit{not} one-to-one.
\begin{example}{}
From the graph of each of the following functions, determine whether
the function is one-to-one. State your reason(s).
\textbf{Solution}
\begin{minipage}[t]{0.6\textwidth}
\begin{enumerate}[label=(\alph*)]
\setcounter{enumi}{0}
\item $y=x^{3},\:x\in\R$. \\
Any horizontal line $y=b$, where $b\in\R$, cuts the graph of $y=x^{3}$
at exactly one point. \\
Thus we say that $f$ is a one-to-one function.
\end{enumerate}
\end{minipage}
\begin{minipage}[t]{0.1\textwidth}
\begin{center}
\includegraphics[width=6cm]{\string"lib/Graphics/HorizonatlTest1\string".png}
\par\end{center}
\end{minipage}
\begin{minipage}[t]{0.6\textwidth}
\begin{enumerate}[label=(\alph*)]
\setcounter{enumi}{1}
\item $y=x^{2},\:x\in\R$. \\
From the diagram, we can see that for any horizontal line $y=b$,
where $b>0$, the line cuts the curve of $y=x^{2}$ twice.\\
Thus we say that $f$ is not a one-to-one function.
\end{enumerate}
\end{minipage}
\begin{minipage}[t]{0.1\textwidth}
\begin{center}
\includegraphics[width=6cm]{\string"lib/Graphics/HorizontalTest2\string".png}
\par\end{center}
\end{minipage}
\begin{minipage}[t]{0.6\textwidth}
\begin{enumerate}[label=(\alph*)]
\setcounter{enumi}{2}
\item $y=x^{2},\:x\geq0$. \\
Any horizontal line $y=b$, where $b\geq0$, cuts the graph of $y=x^{2}$
at exactly one point. \\
Thus we say that $f$ is a one-to-one function.
\end{enumerate}
\end{minipage}
\begin{minipage}[t]{0.1\textwidth}
\begin{center}
\includegraphics[width=6cm]{\string"lib/Graphics/HorizontalTest3\string".png}
\par\end{center}
\end{minipage}
\end{example}
\newpage
\section{Inverse Functions}
\subsection{Intuition Behind an Inverse Function}
Consider the function $f$ with a domain $\left\{ 1,2,3\right\} $
and range $\left\{ A,B,C\right\} $ represented by the mapping below.
\begin{center}
\includegraphics[width=3.5cm]{\string"lib/Graphics/InverseFunction1\string".png}\hspace{3cm}\includegraphics[width=3.5cm]{\string"lib/Graphics/InverseFunction2\string".png}
\par\end{center}
A new function have domain $\left\{ A,B,C\right\} $ and range $\left\{ 1,2,3\right\} $
is formed if we reverse the arrows as shown above. This new function
is called the inverse of $f$ and is denoted by $f^{-1}$ , read ``f
inverse''.
From the above diagrams we observe that,
\begin{align*}
f\left(1\right) & =B\hspace{1cm}f^{-1}\left(B\right)=1\\
f\left(2\right) & =A\hspace{1cm}f^{-1}\left(A\right)=2\\
f\left(3\right) & =C\hspace{1cm}f^{-1}\left(C\right)=3
\end{align*}
This establishes the following relation.
\medskip{}
\centerline{\begin{minipage}{.4\textwidth}
\begin{tcolorbox}[colback=blue!5, colframe=black,boxrule=.4pt, sharpish corners]
\begin{center}
$\text{Domain of }f^{-1}=\text{Range of }f$
\smallskip{}
and
\smallskip{}
\hspace{.1cm} $\text{Range of }f^{-1}=\text{Domain of }f$
\par\end{center}
\end{tcolorbox}
\end{minipage}}
\medskip{}
Not all functions have an inverse. Lets consider the following function
$g$ with domain $\left\{ 1,2,3\right\} $ and range $\left\{ A,B\right\} $
represented by the mapping below.
\begin{center}
\includegraphics[width=3.5cm]{\string"lib/Graphics/NotInverse1\string".png}\hspace{3cm}\includegraphics[width=3.5cm]{\string"lib/Graphics/NotInverse2\string".png}
\par\end{center}
The inverse function of $g$ does not exist. This is because for a
function to exist, each value of in our domain must correspond to
exactly one value in our range. However, in this case, $g^{-1}$ maps
$A$ to two elements: $2$ and $3$.
\newpage
\subsection{Determining if a Function is Invertible}
\begin{tcolorbox}[colback=blue!5, colframe=black,boxrule=.4pt, sharpish corners]
A function $f$ defined for some domain $D$ is one-to-one (or \textbf{injective}) if, each value of $y$ in the \textit{range} of $f$ there is only one value $x\in D$ such that $y=f\left(x\right)$.
\end{tcolorbox}
\medskip{}
\begin{tcolorbox}[colback=blue!5, colframe=black,boxrule=.4pt, sharpish corners]
A function $f$ defined for some domain $D$ is \textbf{surjective} if, each value of $y$ in the \textit{codomain} of $f$ there is at least one element $x\in D$ such that $y=f\left(x\right)$.
\end{tcolorbox}
\medskip{}
\begin{tcolorbox}[colback=blue!5, colframe=black,boxrule=.4pt, sharpish corners]
A function $f$ defined for some domain $D$ is \textbf{bijective} if, each value of $y$ in the \textit{codomain} of $f$ there is only one value $x\in D$ such that $y=f\left(x\right)$. Or in other words,
a function is bijective if it is injective and surjective.
\end{tcolorbox}
\bigskip{}
\begin{tabular}{>{\centering}p{3.6cm}>{\centering}p{3.6cm}>{\centering}p{3.6cm}>{\centering}p{3.6cm}}
\includegraphics[width=3.5cm]{\string"lib/Graphics/InjectiveFunction\string".png} & \includegraphics[width=3.5cm]{\string"lib/Graphics/Bijective\string".png} & \includegraphics[width=3.5cm]{\string"lib/Graphics/Surjective\string".png} & \includegraphics[width=3.5cm]{\string"lib/Graphics/NonInjectiveFunction\string".png}\tabularnewline
Injective, non-surjective function & Injective, surjective function (bijective) & Non-injective, surjective function & Non-injective, non-surjective function\tabularnewline
\end{tabular}
\bigskip{}
A function is only \textbf{invertible }if it is bijective. However,
if we take the codomain of a function to be the same as the range (i.e. assume the function is surjective), then it will suffice to prove that the function is \textbf{one-to-one} to conclude that a function is invertible. For our purposes, we will always assume that our functions are surjective.
From the above, we can conclude the following.
\begin{tcolorbox}[colback=blue!5, colframe=black,boxrule=.4pt, sharpish corners]
Suppose $f:X\mapsto Y$ is a function from domain $X$ to range $Y$,
then the \textbf{inverse function of $f$ exists only if $f$ is a one-to-one function}.
The inverse function is defined by
\[
f^{-1}\left(y\right)=x\Longleftrightarrow f\left(x\right)=y,\hspace{0.3cm}y\in Y
\]
\end{tcolorbox}
\subsection{Finding the Inverse of a Function}
\begin{tcolorbox}[colback=blue!5, colframe=black,boxrule=.4pt, sharpish corners]
Given the function $f\left(x\right)$ we can find the inverse $f^{-1}\left(x\right)$
using this process:
\begin{enumerate}
\item Replace $f\left(x\right)$ with $y$.
\item Solve for $x$ in terms of $y$.
\item Replace $x$ with $f^{-1}\left(y\right)$.
\item Replace our $y$ term with our $x$ term.
\end{enumerate}
\end{tcolorbox}
\newpage
\begin{example}{}
The function $f$ is defined by $f\left(x\right)=-x^{2}+3x+4,\:x\in\R$.
\begin{enumerate}[label=(\alph*)]
\item Show by means of a graphical argument that the inverse function
$f^{-1}$ does not exist.
\item If the function $f$ has an inverse when its domain is restricted
to $x\leq k$. Find the greatest value of $k$ for which the inverse
function $f^{-1}$ exists and define $f^{-1}$, stating its domain.
\end{enumerate}
\textbf{Solution}
\begin{enumerate}[label=(\alph*)]
\item Sketching the graph of $f\left(x\right)$,
\begin{center}
\includegraphics[width=6cm]{\string"lib/Graphics/FunctionsExample3a\string".png}
\par\end{center}
From the diagram, we see that any line $y=b$, where $b<6.25$ cuts
the graph of $f$ at two points. Thus, $f$ is not a one-to-one function
and $f^{-1}$ does not exist.
\item From the graph, we can see that the largest value of $k$ possible,
for $f$ to be a one-to-one function, is ${\displaystyle k=\frac{3}{2}}$.
Let $y=f\left(x\right)$.
\begin{align*}
y & =-x^{2}+3x+4\\
& =-\left(x^{2}-3x-4\right)\\
& =-\left[\left(x-\frac{3}{2}\right)^{2}-\frac{25}{4}\right]\\
y-\frac{25}{4} & =-\left(x-\frac{3}{2}\right)^{2}\\
x & =\frac{3}{2}\pm\sqrt{\frac{25}{4}-y} \\
& =\frac{3}{2}-\sqrt{\frac{25}{4}-y}\hspace{.5cm}\left( \text{Since ${\displaystyle x\leq\frac{3}{2}}$}\right)\\
f^{-1}\left(y\right) & =\frac{3}{2}-\sqrt{\frac{25}{4}-y}\\
f^{-1}\left(x\right) & =\frac{3}{2}-\sqrt{\frac{25}{4}-x},\;x\in\R,\,x\leq\frac{25}{4}
\end{align*}
\end{enumerate}
\end{example}
\newpage
\begin{example}{}
Given a function ${\displaystyle f\left(x\right)=\frac{3x}{2x-1}},\:x\in\R,x>{\displaystyle \frac{1}{2}}$. Find an expression for $f^{-1}\left(x\right)$. State the domain and range for $f$ and $f^{-1}$.
\textbf{Solution}
Let ${\displaystyle y=f\left(x\right)}$
\begin{align*}
y & =\frac{3x}{2x-1}\\
\left(2x-1\right)y & =3x\\
2xy-y & =3x\\
2xy-3x & =y\\
x\left(2y-3\right) & =y\\
x & =\frac{y}{2y-3}\\
f^{-1}\left(y\right) & =\frac{y}{2y-3}\\
f^{-1}\left(x\right) & =\frac{x}{2x-3}
\end{align*}
${\displaystyle D_{f}=R_{f^{-1}}=\left(\frac{1}{2},\infty\right)}$
${\displaystyle R_{f}=D_{f^{-1}}=\left(\frac{3}{2},\infty\right)}$
\end{example}
\subsection{Graphing Inverse Functions}
\begin{minipage}{.6\textwidth}
Here is the graph of the function and its inverse from \textsf{Example 1.4}. We can see that the graph of the inverse is a \textit{reflection} of the function about the line $y=x$ .
\end{minipage}
\begin{minipage}{.35\textwidth}
\begin{center}
\includegraphics[width=6cm,valign=t]{\string"lib/Graphics/GraphingInverse\string".png}
\par\end{center}
\end{minipage}
\begin{tcolorbox}[colback=blue!5, colframe=black,boxrule=.4pt, sharpish corners]
The geometrical relationship between $f$ and $f^{-1}$ is as follows:
\begin{itemize}
\item A point $\left(x_{0},y_{0}\right)$ on $f$ becomes a point $\left(y_{0},x_{0}\right)$
on $f^{-1}$
\item A vertical asymptote on $f$ becomes a horizontal asymptote on $f^{-1}$
\item The domain of $f$ becomes the range of $f^{-1}$
\item The range of $f$ becomes the domain of $f^{-1}$
\item The two graphs intersect at $y=x$
\end{itemize}
\end{tcolorbox}
\newpage
\section{Composite Functions}
Composite functions refers to the combining of two functions in a
manner where the output for one function becomes the input for the
other. Suppose we have two functions $f$ and $g$. If the first function
is $f$ and the result is mapped onto $g$, the resultant (composite)
function is called $gf$.
Consider the following functions
\begin{align*}
f\left(x\right) & =x+1,\quad\text{has domain \ensuremath{A=\left\{ 1,3\right\} } and range \ensuremath{B=\left\{ 2,4\right\} } }\\
g\left(x\right) & =x^{2},\hspace{0.8cm}\text{has domain \ensuremath{C=\left\{ 1,2,4,5\right\} } and range \ensuremath{D=\left\{ 1,4,16,25\right\} } }
\end{align*}
The mapping is as shown below.
\begin{center}
\includegraphics[width=5.5cm]{\string"lib/Graphics/CompositeFunction\string".png}
\par\end{center}
Function $f$ first maps the elements in set $A$ to set $B$, where
$B$ is a subset of $C$. Another function $g$ maps the elements
in set $B$ to those in set $D$. Notice that for this composition
to work, the range of $f$ has to be a subset of the domain of $g$,
i.e. $R_{f}\subseteq D_{g}$.
\[
gf\left(x\right)=\left(x+1\right)^{2},\quad\text{has domain \ensuremath{A=\left\{ 1,3\right\} } and range \ensuremath{D=\left\{ 4,16\right\} } }
\]
Below we see an example where this condition is not met.
\begin{align*}
f\left(x\right) & =x+1,\quad\text{has domain \ensuremath{A=\left\{ 2,3,4\right\} } and range \ensuremath{B=\left\{ 3,4,5\right\} } }\\
g\left(x\right) & =x^{2},\hspace{0.8cm}\text{has domain \ensuremath{C=\left\{ 4,5\right\} } and range \ensuremath{D=\left\{ 16,25\right\} } }
\end{align*}
\begin{center}
\includegraphics[width=5.5cm]{\string"lib/Graphics/NotCompositeFunction\string".png}
\par\end{center}
From the diagram, we say that $f$ maps $2$ to give $3$, which is
not in the domain of $g$. Thus the composite function $gf$ does
not exist.
\begin{tcolorbox}[colback=blue!5, colframe=black,boxrule=.4pt, sharpish corners]
A composite function $gf$ \textbf{exists} if the range of $f$ is a subset of the domain of $g$, i.e. $R_{f}\subseteq D_{g}$.
The \textbf{domain} of our composite function $gf$ is equal to the domain
of $f$, i.e. $D_{gf}=D_{f}$.
The \textbf{range} of our composite function $gf$ can be determined by using
the \textbf{mapping method}
\[
D_{f}\overset{f}{\longrightarrow}R_{f}=\text{Restricted \ensuremath{D_{g}}}\overset{g}{\longrightarrow}R_{gf}
\]
\end{tcolorbox}
\newpage
\begin{example}{}
Functions $f$ and $g$ are defined by $f\left(x\right)=2x+1,\:x\in\R$
and $g\left(x\right)=5x^{2},\:x\in\R$.
Find the rule of the following composite functions.
\begin{tasks}[label=(\alph*),label-width=3.5ex](2)
\task $fg$
\task $gf$
\task $ff^{-1}$
\task $f^{2}$
\end{tasks}
\textbf{Solution }
\begin{tasks}[label=(\alph*),label-width=3.5ex](2)
\task
$
\begin{aligned}[t]
fg\left(x\right) & =f\left[g\left(x\right)\right]\\
& =f\left[5x^{2}\right]\\
& =10x^{2}+1
\end{aligned}
$
\task
$
\begin{aligned}[t]
gf\left(x\right) & =g\left[f\left(x\right)\right]\\
& =g\left[2x+1\right]\\
& =5\left(2x+1\right)^{2}
\end{aligned}
$
\task First, we need to find $f^{-1}$.
Let $y=2x+1$
$
\begin{aligned}[t]
y & =2x+1\\
x & =\frac{1}{2}\left(y-1\right)\\
f^{-1}\left(y\right) & =\frac{1}{2}\left(y-1\right)\\
f^{-1}\left(x\right) & =\frac{1}{2}\left(x-1\right)
\end{aligned}
$
So, the inverse function of $f$ is ${\displaystyle f^{-1}\left(x\right)=\frac{1}{2}\left(x-1\right)}$.
$
\begin{aligned}[t]
ff^{-1}\left(x\right) & =f\left[f^{-1}\left(x\right)\right]\\
& =f\left[\frac{1}{2}\left(x-1\right)\right]\\
& =2\left(\frac{1}{2}\left(x-1\right)\right)+1\\
& =x
\end{aligned}
$
\task
$
\begin{aligned}[t]
f^{2}\left(x\right) & =f\left[f\left(x\right)\right]\\
& =f\left[2x+1\right]\\
& =2\left(2x+1\right)+1\\
& =4x+3
\end{aligned}
$
\end{tasks}
\end{example}
Note:
Given a function $y=f\left(x\right)$, if $f^{-1}$ exists and $f^{-1}f$
exists, then $f^{-1}f\left(x\right)=x,\:x\in D_{f}$.
Similarly, if $f^{-1}$ exists and $ff^{-1}\left(x\right)$ exists,
then $ff^{-1}\left(x\right)=x,\:x\in D_{f^{-1}}$.
\newpage
\begin{example}{}
The functions $f$ and $g$ are defined by $f\left(x\right)=x\left(x-2\right),\;x\in\R,x>0$ and $g\left(x\right)=\lambda x^{2}+2,\;x\in\R,x<k$ where $\lambda$ is a positive constant and $k\in\R$.
\begin{enumerate}[label=(\alph*)]
\item For $k=1$, stating your reasons clearly, determine whether
$g^{-1}$ exists.
\item For $k=0$,
\begin{enumerate}[label=(\roman*)]
\item define in similar form, the inverse function $g^{-1}$ in
terms of $\lambda$.
\item give a reason why the composite function $fg$ exists, find
$fg$ and state its domain and range.
\end{enumerate}
\end{enumerate}
\textbf{Solution}
\begin{enumerate}[label=(\alph*)]