-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathDefinition.h
139 lines (124 loc) · 6.09 KB
/
Definition.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*******************************************************************************
* Copyright (c) 2015-2017
* School of Electrical, Computer and Energy Engineering, Arizona State University
* PI: Prof. Shimeng Yu
* All rights reserved.
*
* This source code is part of NeuroSim - a device-circuit-algorithm framework to benchmark
* neuro-inspired architectures with synaptic devices(e.g., SRAM and emerging non-volatile memory).
* Copyright of the model is maintained by the developers, and the model is distributed under
* the terms of the Creative Commons Attribution-NonCommercial 4.0 International Public License
* http://creativecommons.org/licenses/by-nc/4.0/legalcode.
* The source code is free and you can redistribute and/or modify it
* by providing that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Developer list:
* Pai-Yu Chen Email: pchen72 at asu dot edu
*
* Xiaochen Peng Email: xpeng15 at asu dot edu
********************************************************************************/
// This file cannot be compiled alone. Only include this file in main.cpp.
/* Global variables */
Param *param = new Param(); // Parameter set
/* Inputs of training set */
std::vector< std::vector<double> >
Input(param->numMnistTrainImages, std::vector<double>(param->nInput));
/* Outputs of training set */
std::vector< std::vector<double> >
Output(param->numMnistTrainImages, std::vector<double>(param->nOutput));
/* Weights from input to hidden layer */
std::vector< std::vector<double> >
weight1(param->nHide, std::vector<double>(param->nInput));
/* Weights from hidden layer to output layer */
std::vector< std::vector<double> >
weight2(param->nOutput, std::vector<double>(param->nHide));
/* Weight change of weight1 */
std::vector< std::vector<double> >
deltaWeight1(param->nHide, std::vector<double>(param->nInput));
/* Weight change of weight2 */
std::vector< std::vector<double> >
deltaWeight2(param->nOutput, std::vector<double>(param->nHide));
/*the variables to track the ΔW*/
std::vector< std::vector<double> >
totalDeltaWeight1(param->nHide, std::vector<double>(param->nInput));
std::vector< std::vector<double> >
totalDeltaWeight1_abs(param->nHide, std::vector<double>(param->nInput));
/*the variables to track the ΔW*/
std::vector< std::vector<double> >
totalDeltaWeight2(param->nOutput, std::vector<double>(param->nHide));
std::vector< std::vector<double> >
totalDeltaWeight2_abs(param->nOutput, std::vector<double>(param->nHide));
/* Inputs of testing set */
std::vector< std::vector<double> >
testInput(param->numMnistTestImages, std::vector<double>(param->nInput));
/* Outputs of testing set */
std::vector< std::vector<double> >
testOutput(param->numMnistTestImages, std::vector<double>(param->nOutput));
/* Digitized inputs of training set (an integer between 0 to 2^numBitInput-1) */
std::vector< std::vector<int> >
dInput(param->numMnistTrainImages, std::vector<int>(param->nInput));
/* Digitized inputs of testing set (an integer between 0 to 2^numBitInput-1) */
std::vector< std::vector<int> >
dTestInput(param->numMnistTestImages, std::vector<int>(param->nInput));
// the arrays for optimization
std::vector< std::vector<double> >
gradSquarePrev1(param->nHide, std::vector<double>(param->nInput));
std::vector< std::vector<double> >
gradSquarePrev2(param->nOutput, std::vector<double>(param->nHide));
std::vector< std::vector<double> >
gradSum1(param->nHide, std::vector<double>(param->nInput));
std::vector< std::vector<double> >
gradSum2(param->nOutput, std::vector<double>(param->nHide));
std::vector< std::vector<double> >
momentumPrev1(param->nHide, std::vector<double>(param->nInput));
std::vector< std::vector<double> >
momentumPrev2(param->nOutput, std::vector<double>(param->nHide));
/* # of correct prediction */
int correct = 0;
/* Synaptic array between input and hidden layer */
Array *arrayIH = new Array(param->nHide, param->nInput, param->arrayWireWidth);
/* Synaptic array between hidden and output layer */
Array *arrayHO = new Array(param->nOutput, param->nHide, param->arrayWireWidth);
/* Random number generator engine */
std::mt19937 gen;
/* NeuroSim */
SubArray *subArrayIH; // NeuroSim synaptic core for arrayIH
SubArray *subArrayHO; // NeuroSim synaptic core for arrayHO
/* Global properties of subArrayIH */
InputParameter inputParameterIH;
Technology techIH;
MemCell cellIH;
/* Global properties of subArrayHO */
InputParameter inputParameterHO;
Technology techHO;
MemCell cellHO;
/* Neuron peripheries below subArrayIH */
Adder adderIH(inputParameterIH, techIH, cellIH);
Mux muxIH(inputParameterIH, techIH, cellIH);
RowDecoder muxDecoderIH(inputParameterIH, techIH, cellIH);
DFF dffIH(inputParameterIH, techIH, cellIH);
Subtractor subtractorIH(inputParameterIH, techIH, cellIH);
/* Neuron peripheries below subArrayHO */
Adder adderHO(inputParameterHO, techHO, cellHO);
Mux muxHO(inputParameterHO, techHO, cellHO);
RowDecoder muxDecoderHO(inputParameterHO, techHO, cellHO);
DFF dffHO(inputParameterHO, techHO, cellHO);
Subtractor subtractorHO(inputParameterHO, techHO, cellHO);