-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathutils.py
229 lines (194 loc) · 6.61 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import datetime
import logging
import os
import pathlib
import psutil
import re
import signal
from typing import List
import h5py
# from haikunator import Haikunator
import numpy as np
import psutil
import torch
import torch.nn as nn
# HAIKU = haikunator.Haikunator()
def prepare_input(
x,
static_features,
params,
variable_encoder,
token_expander,
initial_mesh,
data):
if variable_encoder is not None and token_expander is not None:
if params.grid_type == 'uniform':
inp = token_expander(x, variable_encoder(x),
static_features.cuda())
elif params.grid_type == 'non uniform':
initial_mesh = initial_mesh.cuda()
equation = [i[0] for i in data['equation']]
inp = token_expander(
x,
variable_encoder(
initial_mesh +
data['d_grid_x'].cuda()[0],
equation),
static_features.cuda())
elif params.n_static_channels > 0 and params.grid_type == 'non uniform':
inp = torch.cat(
[x, static_features[:, :, :params.n_static_channels].cuda()], dim=-1)
else:
inp = x
return inp
def get_wandb_api_key(api_key_file="config/wandb_api_key.txt"):
try:
return os.environ["WANDB_API_KEY"]
except KeyError:
with open(api_key_file, "r") as f:
key = f.read()
return key.strip()
def get_mesh(params):
"""Get the mesh from a location."""
if hasattr(params, "text_mesh") and params.text_mesh:
# load mesh_x and mesh_y from txt file as np array
mesh_x = np.loadtxt(params.mesh_x)
mesh_y = np.loadtxt(params.mesh_y)
# create mesh from mesh_x and mesh_y
mesh = np.zeros((mesh_x.shape[0], 2))
mesh[:, 0] = mesh_x
mesh[:, 1] = mesh_y
else:
h5f = h5py.File(params.input_mesh_location, 'r')
mesh = h5f['mesh/coordinates']
if params.super_resolution:
# load mesh_x and mesh_y from txt file as np array
mesh_x = np.loadtxt(params.super_resolution_mesh_x)
mesh_y = np.loadtxt(params.super_resolution_mesh_y)
# create mesh from mesh_x and mesh_y
mesh_sup = np.zeros((mesh_x.shape[0], 2))
mesh_sup[:, 0] = mesh_x
mesh_sup[:, 1] = mesh_y
# merge it with the original mesh
mesh = np.concatenate((mesh, mesh_sup), axis=0)
print("Super Resolution Mesh Shape", mesh.shape)
if hasattr(
params,
'sub_sample_size') and params.sub_sample_size is not None:
mesh_size = mesh.shape[0]
indexs = [i for i in range(mesh_size)]
np.random.seed(params.random_seed)
sub_indexs = np.random.choice(
indexs, params.sub_sample_size, replace=False)
mesh = mesh[sub_indexs, :]
return mesh[:]
# TODO add collision checks
# TODO add opts to toggle haiku and date fixes
def save_model(
model,
directory: pathlib.Path,
stage=None,
sep='_',
name=None,
config=None):
"""Saves a model with a unique prefix/suffix
The model is prefixed with is date (formatted like YYMMDDHHmm)
and suffixed with a "Heroku-like" name (for verbal reference).
Params:
---
stage: None | StageEnum
Controls the infix of the model name according to the following mapping:
| None -> "model"
| RECONSTRUCTIVE -> "reconstructive"
| PREDICTIVE -> "predictive"
"""
prefix = datetime.datetime.utcnow().strftime("%y%m%d%H%M")
infix = "model"
if stage is not None:
infix = stage.value.lower()
# suffix = Haikunator.haikunate(token_length=0, delimiter=sep)
torch.save(model.state_dict(), directory / f"{name}{sep}{config}{sep}.pth")
def extract_pids(message) -> List[int]:
# Assume `message` has a preamble followed by a sequence of tokens like
# "Process \d+" with extra characters in between such tokens.
pattern = re.compile("(Process \\d+)")
# Contains "Process" tokens and extra characters, interleaved:
tokens = pattern.split(message)
# print('\n'.join(map(repr, zip(split[1::2], split[2::2]))))
pattern2 = re.compile("(\\d+)")
# print('\n'.join([repr((s, pattern2.search(t)[0])) for t in tokens[1::2]]))
pids = [int(pattern2.search(t)[0]) for t in tokens[1::2]]
return pids
# https://psutil.readthedocs.io/en/latest/#kill-process-tree
def signal_process_tree(
pid,
sig=signal.SIGTERM,
include_parent=True,
timeout=None,
on_terminate=None,
logger=None,
):
"""Kill a process tree (including grandchildren) with signal ``sig``
Return a (gone, still_alive) tuple.
Parameters
---
timeout: float
Time, in seconds, to wait on each signaled process.
on_terminate: Optional[Callable]
A callback function which is called as soon as a child terminates.
Optional.
"""
assert pid != os.getpid(), "won't kill myself"
parent = psutil.Process(pid)
children = parent.children(recursive=True)
if include_parent:
children.append(parent)
if logger is None:
logger = logging.getLogger()
wait_children = []
for p in children:
try:
p.send_signal(sig)
wait_children.append(p)
except psutil.AccessDenied:
logger.error(f"Unable to terminate Process {pid} (AccessDenied)")
except psutil.NoSuchProcess:
pass
gone, alive = psutil.wait_procs(
wait_children,
timeout=timeout,
callback=on_terminate,
)
return (gone, alive)
def count_model_params(model):
"""Returns the total number of parameters of a PyTorch model
Notes
-----
One complex number is counted as two parameters (we count real and imaginary parts)'
"""
return sum(
[p.numel() * 2 if p.is_complex() else p.numel()
for p in model.parameters()]
)
def signal_my_processes(
username,
pids,
sig=signal.SIGTERM,
logger=None,
):
if logger is None:
logger = logging.getLogger()
my_pids = []
for pid in pids:
p = psutil.Process(pid)
with p.oneshot():
p = p.as_dict(attrs=["username", "status"])
# TODO add other states to the filter
if p["username"] == username and p["status"] == "sleeping":
my_pids.append(pid)
else:
_p = {"pid": pid, **p}
logger.warning(f"Cannot signal process: {_p}")
for my_pid in my_pids:
gone, alive = signal_process_tree(pid, sig, timeout=60, logger=logger)
logger.info(f"{gone=}, {alive=}")