forked from skrjha20/Glassdoor-Sentiment-Analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
517 lines (424 loc) · 15.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
'''
main.py
----------
Matthew Chatham
June 6, 2018
Given a company's landing page on Glassdoor and an output filename, scrape the
following information about each employee review:
Review date
Employee position
Employee location
Employee status (current/former)
Review title
Number of helpful votes
Pros text
Cons text
Advice to mgmttext
Ratings for each of 5 categories
Overall rating
'''
import time
import pandas as pd
from argparse import ArgumentParser
import argparse
import logging
import logging.config
from selenium import webdriver as wd
from selenium.webdriver import ActionChains
import selenium
import numpy as np
from schema import SCHEMA
import json
import urllib
import datetime as dt
start = time.time()
DEFAULT_URL = ('https://www.glassdoor.com/Overview/Working-at-'
'Premise-Data-Corporation-EI_IE952471.11,35.htm')
parser = ArgumentParser()
parser.add_argument('-u', '--url',
help='URL of the company\'s Glassdoor landing page.',
default=DEFAULT_URL)
parser.add_argument('-f', '--file', default='glassdoor_ratings.csv',
help='Output file.')
parser.add_argument('--headless', action='store_true',
help='Run Chrome in headless mode.')
parser.add_argument('--username', help='Email address used to sign in to GD.')
parser.add_argument('-p', '--password', help='Password to sign in to GD.')
parser.add_argument('-c', '--credentials', help='Credentials file')
parser.add_argument('-l', '--limit', default=25,
action='store', type=int, help='Max reviews to scrape')
parser.add_argument('--start_from_url', action='store_true',
help='Start scraping from the passed URL.')
parser.add_argument(
'--max_date', help='Latest review date to scrape.\
Only use this option with --start_from_url.\
You also must have sorted Glassdoor reviews ASCENDING by date.',
type=lambda s: dt.datetime.strptime(s, "%Y-%m-%d"))
parser.add_argument(
'--min_date', help='Earliest review date to scrape.\
Only use this option with --start_from_url.\
You also must have sorted Glassdoor reviews DESCENDING by date.',
type=lambda s: dt.datetime.strptime(s, "%Y-%m-%d"))
args = parser.parse_args()
if not args.start_from_url and (args.max_date or args.min_date):
raise Exception(
'Invalid argument combination:\
No starting url passed, but max/min date specified.'
)
elif args.max_date and args.min_date:
raise Exception(
'Invalid argument combination:\
Both min_date and max_date specified.'
)
if args.credentials:
with open(args.credentials) as f:
d = json.loads(f.read())
args.username = d['username']
args.password = d['password']
else:
try:
with open('secret.json') as f:
d = json.loads(f.read())
args.username = d['username']
args.password = d['password']
except FileNotFoundError:
msg = 'Please provide Glassdoor credentials.\
Credentials can be provided as a secret.json file in the working\
directory, or passed at the command line using the --username and\
--password flags.'
raise Exception(msg)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
logger.addHandler(ch)
formatter = logging.Formatter(
'%(asctime)s %(levelname)s %(lineno)d\
:%(filename)s(%(process)d) - %(message)s')
ch.setFormatter(formatter)
logging.getLogger('selenium').setLevel(logging.CRITICAL)
logging.getLogger('selenium').setLevel(logging.CRITICAL)
def scrape(field, review, author):
def scrape_date(review):
date = review.find_element_by_tag_name(
'time').get_attribute('datetime')
time_index = date.find(':') - 3
res = date[:time_index]
return res
def scrape_emp_title(review):
if 'Anonymous Employee' not in review.text:
try:
res = author.find_element_by_class_name(
'authorJobTitle').text.split('-')[1]
except Exception:
logger.warning('Failed to scrape employee_title')
res = "N/A"
else:
res = "Anonymous"
return res
def scrape_location(review):
if 'in' in review.text:
try:
res = author.find_element_by_class_name(
'authorLocation').text
except Exception:
logger.warning('Failed to scrape employee_location')
res = np.nan
else:
res = "N/A"
return res
def scrape_status(review):
try:
res = author.text.split('-')[0]
except Exception:
logger.warning('Failed to scrape employee_status')
res = "N/A"
return res
def scrape_rev_title(review):
return review.find_element_by_class_name('summary').text.strip('"')
def scrape_helpful(review):
try:
helpful = review.find_element_by_class_name('helpfulCount')
res = helpful.text[helpful.text.find('(') + 1: -1]
except Exception:
res = 0
return res
def expand_show_more(section):
try:
more_link = section.find_element_by_class_name('v2__EIReviewDetailsV2__continueReading')
more_link.click()
except Exception:
pass
def scrape_pros(review):
try:
pros = review.find_element_by_class_name('gdReview')
expand_show_more(pros)
pro_index = pros.text.find('Pros')
con_index = pros.text.find('Cons')
res = pros.text[pro_index+5 : con_index]
except Exception:
res = np.nan
return res
def scrape_cons(review):
try:
cons = review.find_element_by_class_name('gdReview')
expand_show_more(cons)
con_index = cons.text.find('Cons')
continue_index = cons.text.find('Continue reading')
res = cons.text[con_index+5 : continue_index]
except Exception:
res = np.nan
return res
def scrape_advice(review):
try:
advice = review.find_element_by_class_name('gdReview')
expand_show_more(advice)
advice_index = advice.text.find('Advice to Management')
if advice_index != -1:
helpful_index = advice.text.rfind('Helpful (')
res = advice.text[advice_index+21 : helpful_index]
else:
res = np.nan
except Exception:
res = np.nan
return res
def scrape_overall_rating(review):
try:
ratings = review.find_element_by_class_name('gdStars')
res = float(ratings.text[:3])
except Exception:
res = np.nan
return res
def _scrape_subrating(i):
try:
ratings = review.find_element_by_class_name('gdStars')
subratings = ratings.find_element_by_class_name(
'subRatings').find_element_by_tag_name('ul')
this_one = subratings.find_elements_by_tag_name('li')[i]
res = this_one.find_element_by_class_name(
'gdBars').get_attribute('title')
except Exception:
res = np.nan
return res
def scrape_work_life_balance(review):
return _scrape_subrating(0)
def scrape_culture_and_values(review):
return _scrape_subrating(1)
def scrape_career_opportunities(review):
return _scrape_subrating(2)
def scrape_comp_and_benefits(review):
return _scrape_subrating(3)
def scrape_senior_management(review):
return _scrape_subrating(4)
def scrape_recommends(review):
try:
res = review.find_element_by_class_name('recommends').text
res = res.split('\n')
return res[0]
except:
return np.nan
def scrape_outlook(review):
try:
res = review.find_element_by_class_name('recommends').text
res = res.split('\n')
if len(res) == 2 or len(res) == 3:
if 'CEO' in res[1]:
return np.nan
return res[1]
return np.nan
except:
return np.nan
def scrape_approve_ceo(review):
try:
res = review.find_element_by_class_name('recommends').text
res = res.split('\n')
if len(res) == 3:
return res[2]
if len(res) == 2:
if 'CEO' in res[1]:
return res[1]
return np.nan
except:
return np.nan
funcs = [
scrape_date,
scrape_emp_title,
scrape_location,
scrape_status,
scrape_rev_title,
scrape_helpful,
scrape_pros,
scrape_cons,
scrape_advice,
scrape_overall_rating,
scrape_work_life_balance,
scrape_culture_and_values,
scrape_career_opportunities,
scrape_comp_and_benefits,
scrape_senior_management,
scrape_recommends,
scrape_outlook,
scrape_approve_ceo
]
fdict = dict((s, f) for (s, f) in zip(SCHEMA, funcs))
return fdict[field](review)
def extract_from_page():
def is_featured(review):
try:
review.find_element_by_class_name('featuredFlag')
return True
except selenium.common.exceptions.NoSuchElementException:
return False
def extract_review(review):
try:
author = review.find_element_by_class_name('authorInfo')
except:
return None # Account for reviews that have been blocked
res = {}
# import pdb;pdb.set_trace()
for field in SCHEMA:
res[field] = scrape(field, review, author)
assert set(res.keys()) == set(SCHEMA)
return res
logger.info(f'Extracting reviews from page {page[0]}')
res = pd.DataFrame([], columns=SCHEMA)
reviews = browser.find_elements_by_class_name('empReview')
logger.info(f'Found {len(reviews)} reviews on page {page[0]}')
# refresh page if failed to load properly, else terminate the search
if len(reviews) < 1:
browser.refresh()
time.sleep(5)
reviews = browser.find_elements_by_class_name('empReview')
logger.info(f'Found {len(reviews)} reviews on page {page[0]}')
if len(reviews) < 1:
valid_page[0] = False # make sure page is populated
for review in reviews:
if not is_featured(review):
data = extract_review(review)
if data != None:
logger.info(f'Scraped data for "{data["review_title"]}"\
({data["date"]})')
res.loc[idx[0]] = data
else:
logger.info('Discarding a blocked review')
else:
logger.info('Discarding a featured review')
idx[0] = idx[0] + 1
if args.max_date and \
(pd.to_datetime(res['date']).max() > args.max_date) or \
args.min_date and \
(pd.to_datetime(res['date']).min() < args.min_date):
logger.info('Date limit reached, ending process')
date_limit_reached[0] = True
return res
def more_pages():
try:
current = browser.find_element_by_class_name('selected')
pages = browser.find_element_by_class_name('pageContainer').text.split()
if int(pages[-1]) != int(current.text):
return True
else:
return False
except selenium.common.exceptions.NoSuchElementException:
return False
def go_to_next_page():
logger.info(f'Going to page {page[0] + 1}')
next_ = browser.find_element_by_class_name('nextButton')
ActionChains(browser).click(next_).perform()
time.sleep(5) # wait for ads to load
page[0] = page[0] + 1
def no_reviews():
return False
# TODO: Find a company with no reviews to test on
def navigate_to_reviews():
logger.info('Navigating to company reviews')
browser.get(args.url)
time.sleep(1)
if no_reviews():
logger.info('No reviews to scrape. Bailing!')
return False
reviews_cell = browser.find_element_by_xpath(
'//a[@data-label="Reviews"]')
reviews_path = reviews_cell.get_attribute('href')
# reviews_path = driver.current_url.replace('Overview','Reviews')
browser.get(reviews_path)
time.sleep(1)
return True
def sign_in():
logger.info(f'Signing in to {args.username}')
url = 'https://www.glassdoor.com/profile/login_input.htm'
browser.get(url)
# import pdb;pdb.set_trace()
email_field = browser.find_element_by_name('username')
password_field = browser.find_element_by_name('password')
submit_btn = browser.find_element_by_xpath('//button[@type="submit"]')
email_field.send_keys(args.username)
password_field.send_keys(args.password)
submit_btn.click()
time.sleep(3)
browser.get(args.url)
def get_browser():
logger.info('Configuring browser')
chrome_options = wd.ChromeOptions()
if args.headless:
chrome_options.add_argument('--headless')
chrome_options.add_argument('log-level=3')
browser = wd.Chrome(options=chrome_options)
return browser
def get_current_page():
logger.info('Getting current page number')
current = browser.find_element_by_class_name('selected')
return int(current.text)
def verify_date_sorting():
logger.info('Date limit specified, verifying date sorting')
ascending = urllib.parse.parse_qs(
args.url)['sort.ascending'] == ['true']
if args.min_date and ascending:
raise Exception(
'min_date required reviews to be sorted DESCENDING by date.')
elif args.max_date and not ascending:
raise Exception(
'max_date requires reviews to be sorted ASCENDING by date.')
browser = get_browser()
page = [1]
idx = [0]
date_limit_reached = [False]
valid_page = [True]
def main():
logger.info(f'Scraping up to {args.limit} reviews.')
res = pd.DataFrame([], columns=SCHEMA)
sign_in()
if not args.start_from_url:
reviews_exist = navigate_to_reviews()
if not reviews_exist:
return
elif args.max_date or args.min_date:
verify_date_sorting()
browser.get(args.url)
page[0] = get_current_page()
logger.info(f'Starting from page {page[0]:,}.')
time.sleep(1)
else:
browser.get(args.url)
page[0] = get_current_page()
logger.info(f'Starting from page {page[0]:,}.')
time.sleep(1)
reviews_df = extract_from_page()
res = res.append(reviews_df)
# import pdb;pdb.set_trace()
while more_pages() and\
len(res) < args.limit and\
not date_limit_reached[0] and\
valid_page[0]:
go_to_next_page()
try:
reviews_df = extract_from_page()
res = res.append(reviews_df)
except:
break
logger.info(f'Writing {len(res)} reviews to file {args.file}')
res.to_csv(args.file, index=False, encoding='utf-8')
end = time.time()
logger.info(f'Finished in {end - start} seconds')
if __name__ == '__main__':
main()