-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathEXAMPLE_create_band.py
43 lines (31 loc) · 1.5 KB
/
EXAMPLE_create_band.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# minimal needed modules and suppose curve_fit_utils to be in this directory
import numpy as np
from curve_fit_utils import confidence_band
# generate some fake data according to a model
pinit = np.ones(2)
def model(x, *p):
return p[0]+p[1]*x**2
xdata = np.arange(10)
ydata = model(xdata, *pinit)
yerrs = np.random.normal(loc=5, size=len(ydata)) # add some random errors
ydata += np.random.normal(scale=yerrs) # smear data with random noise
# fit the model and create confidence_band at 68% CL
upper, lower, f, popt, pcov = confidence_band(model, xdata, ydata,
p0=pinit, sigma=yerrs, absolute_sigma=True,
full_output=True)
# get also approximate confidence band with bootstrap to compare
upper_boot, lower_boot = confidence_band(model, xdata, ydata,
p0=pinit, sigma=yerrs, absolute_sigma=True,
bootstrap=True)
# plot data and bands
from matplotlib import pyplot as plt
plt.errorbar(xdata, ydata, yerr=yerrs, fmt='o', color='black', label='DATA')
plt.plot(xdata, f, '--', color='black', label='FIT')
plt.fill_between(xdata, lower, upper,
facecolor='green', linewidth=0.,
alpha=0.5, label='68% CL') # band
plt.fill_between(xdata, lower_boot, upper_boot,
facecolor ='red', linewidth=0.,
alpha=0.5, label='68% CL BOOTSTRAP') # band with bootstrap
plt.legend(loc=2)
plt.show()