-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmodel_runner_group.py
370 lines (343 loc) · 18 KB
/
model_runner_group.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# Santiago Nunez-Corrales and Eric Jakobsson
# Illinois Informatics and Molecular and Cell Biology
# University of Illinois at Urbana-Champaign
# {nunezco,jake}@illinois.edu
# A simple tunable model for COVID-19 response
#from sympy import false
from batchrunner_local import BatchRunnerMP
from multiprocessing import freeze_support
from covidmodel import CovidModel
from covidmodel import CovidModel
from covidmodel import Stage
from covidmodel import AgeGroup
from covidmodel import SexGroup
from covidmodel import ValueGroup
from covidmodel import *
import pandas as pd
import json
import sys
import concurrent.futures
import multiprocessing
import os
import glob
import timeit
import click
def runModelScenario(data,index,virus_data,filenames_list,is_checkpoint):
print(f"Location: { data['location'] }")
print(f"Description: { data['description'] }")
print(f"Prepared by: { data['prepared-by'] }")
print(f"Date: { data['date'] }")
print("")
print("Attempting to configure model from file...")
# Observed distribution of mortality rate per age
age_mortality = {
AgeGroup.C80toXX: data["model"]["mortalities"]["age"]["80+"],
AgeGroup.C70to79: data["model"]["mortalities"]["age"]["70-79"],
AgeGroup.C60to69: data["model"]["mortalities"]["age"]["60-69"],
AgeGroup.C50to59: data["model"]["mortalities"]["age"]["50-59"],
AgeGroup.C40to49: data["model"]["mortalities"]["age"]["40-49"],
AgeGroup.C30to39: data["model"]["mortalities"]["age"]["30-39"],
AgeGroup.C20to29: data["model"]["mortalities"]["age"]["20-29"],
AgeGroup.C10to19: data["model"]["mortalities"]["age"]["10-19"],
AgeGroup.C00to09: data["model"]["mortalities"]["age"]["00-09"],
}
# Observed distribution of mortality rage per sex
sex_mortality = {
SexGroup.MALE: data["model"]["mortalities"]["sex"]["male"],
SexGroup.FEMALE: data["model"]["mortalities"]["sex"]["female"],
}
age_distribution = {
AgeGroup.C80toXX: data["model"]["distributions"]["age"]["80+"],
AgeGroup.C70to79: data["model"]["distributions"]["age"]["70-79"],
AgeGroup.C60to69: data["model"]["distributions"]["age"]["60-69"],
AgeGroup.C50to59: data["model"]["distributions"]["age"]["50-59"],
AgeGroup.C40to49: data["model"]["distributions"]["age"]["40-49"],
AgeGroup.C30to39: data["model"]["distributions"]["age"]["30-39"],
AgeGroup.C20to29: data["model"]["distributions"]["age"]["20-29"],
AgeGroup.C10to19: data["model"]["distributions"]["age"]["10-19"],
AgeGroup.C00to09: data["model"]["distributions"]["age"]["00-09"],
}
# Observed distribution of mortality rage per sex
sex_distribution = {
SexGroup.MALE: data["model"]["distributions"]["sex"]["male"],
SexGroup.FEMALE: data["model"]["distributions"]["sex"]["female"],
}
# Value distribution per stage per interaction (micro vs macroeconomics)
value_distibution = {
ValueGroup.PRIVATE: {
Stage.SUSCEPTIBLE: data["model"]["value"]["private"]["susceptible"],
Stage.EXPOSED: data["model"]["value"]["private"]["exposed"],
Stage.SYMPDETECTED: data["model"]["value"]["private"]["sympdetected"],
Stage.ASYMPTOMATIC: data["model"]["value"]["private"]["asymptomatic"],
Stage.ASYMPDETECTED: data["model"]["value"]["private"]["asympdetected"],
Stage.SEVERE: data["model"]["value"]["private"]["severe"],
Stage.RECOVERED: data["model"]["value"]["private"]["recovered"],
Stage.DECEASED: data["model"]["value"]["private"]["deceased"]
},
ValueGroup.PUBLIC: {
Stage.SUSCEPTIBLE: data["model"]["value"]["public"]["susceptible"],
Stage.EXPOSED: data["model"]["value"]["public"]["exposed"],
Stage.SYMPDETECTED: data["model"]["value"]["public"]["sympdetected"],
Stage.ASYMPTOMATIC: data["model"]["value"]["public"]["asymptomatic"],
Stage.ASYMPDETECTED: data["model"]["value"]["public"]["asympdetected"],
Stage.SEVERE: data["model"]["value"]["public"]["severe"],
Stage.RECOVERED: data["model"]["value"]["public"]["recovered"],
Stage.DECEASED: data["model"]["value"]["public"]["deceased"]
}
}
# load from file
if is_checkpoint:
model_params = {
"num_agents": data["model"]["epidemiology"]["num_agents"],
"width": data["model"]["epidemiology"]["width"],
"height": data["model"]["epidemiology"]["height"],
"repscaling": data["model"]["epidemiology"]["repscaling"],
"kmob": data["model"]["epidemiology"]["kmob"],
"age_mortality": age_mortality,
"sex_mortality": sex_mortality,
"age_distribution": age_distribution,
"sex_distribution": sex_distribution,
"prop_initial_infected": data["model"]["epidemiology"]["prop_initial_infected"],
"rate_inbound": data["model"]["epidemiology"]["rate_inbound"],
"avg_incubation_time": data["model"]["epidemiology"]["avg_incubation_time"],
"avg_recovery_time": data["model"]["epidemiology"]["avg_recovery_time"],
"proportion_asymptomatic": data["model"]["epidemiology"]["proportion_asymptomatic"],
"proportion_severe": data["model"]["epidemiology"]["proportion_severe"],
"prob_contagion": data["model"]["epidemiology"]["prob_contagion"],
"proportion_beds_pop": data["model"]["epidemiology"]["proportion_beds_pop"],
"proportion_isolated": data["model"]["policies"]["isolation"]["proportion_isolated"],
"day_start_isolation": data["model"]["policies"]["isolation"]["day_start_isolation"],
"days_isolation_lasts": data["model"]["policies"]["isolation"]["days_isolation_lasts"],
"after_isolation": data["model"]["policies"]["isolation"]["after_isolation"],
"prob_isolation_effective": data["model"]["policies"]["isolation"]["prob_isolation_effective"],
"social_distance": data["model"]["policies"]["distancing"]["social_distance"],
"day_distancing_start": data["model"]["policies"]["distancing"]["day_distancing_start"],
"days_distancing_lasts": data["model"]["policies"]["distancing"]["days_distancing_lasts"],
"proportion_detected": data["model"]["policies"]["testing"]["proportion_detected"],
"day_testing_start": data["model"]["policies"]["testing"]["day_testing_start"],
"days_testing_lasts": data["model"]["policies"]["testing"]["days_testing_lasts"],
"day_tracing_start": data["model"]["policies"]["tracing"]["day_tracing_start"],
"days_tracing_lasts": data["model"]["policies"]["tracing"]["days_tracing_lasts"],
"new_agent_proportion": data["model"]["policies"]["massingress"]["new_agent_proportion"],
"new_agent_start": data["model"]["policies"]["massingress"]["new_agent_start"],
"new_agent_lasts": data["model"]["policies"]["massingress"]["new_agent_lasts"],
"new_agent_age_mean": data["model"]["policies"]["massingress"]["new_agent_age_mean"],
"new_agent_prop_infected": data["model"]["policies"]["massingress"]["new_agent_prop_infected"],
"stage_value_matrix": value_distibution,
"test_cost": data["model"]["value"]["test_cost"],
"alpha_private": data["model"]["value"]["alpha_private"],
"alpha_public": data["model"]["value"]["alpha_public"],
"day_vaccination_begin": data["model"]["policies"]["vaccine_rollout"]["day_vaccination_begin"],
"day_vaccination_end": data["model"]["policies"]["vaccine_rollout"]["day_vaccination_end"],
"effective_period": data["model"]["policies"]["vaccine_rollout"]["effective_period"],
"effectiveness": data["model"]["policies"]["vaccine_rollout"]["effectiveness"],
"distribution_rate": data["model"]["policies"]["vaccine_rollout"]["distribution_rate"],
"cost_per_vaccine":data["model"]["policies"]["vaccine_rollout"]["cost_per_vaccine"],
"vaccination_percent": data["model"]["policies"]["vaccine_rollout"]["vaccination_percent"],
"step_count": data["ensemble"]["steps"],
"load_from_file": data["model"]["initialization"]["load_from_file"],
"loading_file_path": data["model"]["initialization"]["loading_file_path"],
"starting_step": data["model"]["initialization"]["starting_step"],
"agent_storage": data["output"]["agent_storage"],
"model_storage": data["output"]["model_storage"],
"agent_increment": data["output"]["agent_increment"],
"model_increment": data["output"]["model_increment"]
}
# start from time 0
else:
model_params = {
"num_agents": data["model"]["epidemiology"]["num_agents"],
"width": data["model"]["epidemiology"]["width"],
"height": data["model"]["epidemiology"]["height"],
"repscaling": data["model"]["epidemiology"]["repscaling"],
"kmob": data["model"]["epidemiology"]["kmob"],
"age_mortality": age_mortality,
"sex_mortality": sex_mortality,
"age_distribution": age_distribution,
"sex_distribution": sex_distribution,
"prop_initial_infected": data["model"]["epidemiology"]["prop_initial_infected"],
"rate_inbound": data["model"]["epidemiology"]["rate_inbound"],
"avg_incubation_time": data["model"]["epidemiology"]["avg_incubation_time"],
"avg_recovery_time": data["model"]["epidemiology"]["avg_recovery_time"],
"proportion_asymptomatic": data["model"]["epidemiology"]["proportion_asymptomatic"],
"proportion_severe": data["model"]["epidemiology"]["proportion_severe"],
"prob_contagion": data["model"]["epidemiology"]["prob_contagion"],
"proportion_beds_pop": data["model"]["epidemiology"]["proportion_beds_pop"],
"proportion_isolated": data["model"]["policies"]["isolation"]["proportion_isolated"],
"day_start_isolation": data["model"]["policies"]["isolation"]["day_start_isolation"],
"days_isolation_lasts": data["model"]["policies"]["isolation"]["days_isolation_lasts"],
"after_isolation": data["model"]["policies"]["isolation"]["after_isolation"],
"prob_isolation_effective": data["model"]["policies"]["isolation"]["prob_isolation_effective"],
"social_distance": data["model"]["policies"]["distancing"]["social_distance"],
"day_distancing_start": data["model"]["policies"]["distancing"]["day_distancing_start"],
"days_distancing_lasts": data["model"]["policies"]["distancing"]["days_distancing_lasts"],
"proportion_detected": data["model"]["policies"]["testing"]["proportion_detected"],
"day_testing_start": data["model"]["policies"]["testing"]["day_testing_start"],
"days_testing_lasts": data["model"]["policies"]["testing"]["days_testing_lasts"],
"day_tracing_start": data["model"]["policies"]["tracing"]["day_tracing_start"],
"days_tracing_lasts": data["model"]["policies"]["tracing"]["days_tracing_lasts"],
"new_agent_proportion": data["model"]["policies"]["massingress"]["new_agent_proportion"],
"new_agent_start": data["model"]["policies"]["massingress"]["new_agent_start"],
"new_agent_lasts": data["model"]["policies"]["massingress"]["new_agent_lasts"],
"new_agent_age_mean": data["model"]["policies"]["massingress"]["new_agent_age_mean"],
"new_agent_prop_infected": data["model"]["policies"]["massingress"]["new_agent_prop_infected"],
"stage_value_matrix": value_distibution,
"test_cost": data["model"]["value"]["test_cost"],
"alpha_private": data["model"]["value"]["alpha_private"],
"alpha_public": data["model"]["value"]["alpha_public"],
"day_vaccination_begin": data["model"]["policies"]["vaccine_rollout"]["day_vaccination_begin"],
"day_vaccination_end": data["model"]["policies"]["vaccine_rollout"]["day_vaccination_end"],
"effective_period": data["model"]["policies"]["vaccine_rollout"]["effective_period"],
"effectiveness": data["model"]["policies"]["vaccine_rollout"]["effectiveness"],
"distribution_rate": data["model"]["policies"]["vaccine_rollout"]["distribution_rate"],
"cost_per_vaccine":data["model"]["policies"]["vaccine_rollout"]["cost_per_vaccine"],
"vaccination_percent": data["model"]["policies"]["vaccine_rollout"]["vaccination_percent"]
}
virus_param_list = []
for virus in virus_data["variant"]:
virus_param_list.append(virus_data["variant"][virus])
model_params["variant_data"] = virus_param_list
db = Database()
model_params["db"] = db
var_params = {"dummy": range(25,50,25)}
num_iterations = data["ensemble"]["runs"]
num_steps = data["ensemble"]["steps"]
if is_checkpoint:
batch_run = BatchRunnerMP(
CovidModel,
nr_processes=num_iterations,
fixed_parameters=model_params,
variable_parameters=var_params,
iterations= num_iterations,
max_steps=num_steps,
model_reporters={},
agent_reporters={},
display_progress=True
)
else:
batch_run = BatchRunnerMP(
CovidModel,
nr_processes=num_iterations,
fixed_parameters=model_params,
variable_parameters=var_params,
iterations=num_iterations,
max_steps=num_steps,
model_reporters={
"Step": compute_stepno,
"CummulPrivValue": compute_cumul_private_value,
"CummulPublValue": compute_cumul_public_value,
"CummulTestCost": compute_cumul_testing_cost,
"Rt": compute_eff_reprod_number,
"Employed": compute_employed,
"Unemployed": compute_unemployed
},
display_progress=True
)
if is_checkpoint:
print("Parametrization complete:")
print("")
print("")
print(f"Executing an ensemble of size {num_iterations} using {num_steps} steps with {num_iterations} machine cores for agents...")
else:
print("Parametrization complete:")
print("")
print(f"Running file {filenames_list[index]}")
print("")
print(f"Executing an ensemble of size {num_iterations} using {num_steps} steps with {num_iterations} machine cores...")
cm_runs = batch_run.run_all()
db.close()
if is_checkpoint:
model_ldfs = []
agent_ldfs = []
time_A = timeit.default_timer()
i = 0
for cm in cm_runs.values():
cm[0]["Iteration"] = i
cm[1]["Iteration"] = i
model_ldfs.append(cm[0])
agent_ldfs.append(cm[1])
i = i + 1
model_dfs = pd.concat(model_ldfs)
agent_dfs = pd.concat(agent_ldfs)
model_save_file = data["output"]["model_save_file"]
agent_save_file = data["output"]["agent_save_file"]
#TODO-create the nomenclature for the nature of the save file for both model and agent data. (Very important for organizing test runs for different policy evaluations)
model_dfs.to_csv(model_save_file)
agent_dfs.to_csv(agent_save_file)
time_B = timeit.default_timer()
return (time_B - time_A)
else:
print("")
print("Saving results to file...")
ldfs = []
i = 0
for cm in cm_runs.values():
cm["Iteration"] = i
ldfs.append(cm)
i = i + 1
file_out = data["output"]["prefix"]
dfs = pd.concat(ldfs)
dfs.to_csv(file_out + ".csv")
print(f"Simulation {index} completed without errors.")
if __name__ == '__main__':
argv1 = sys.argv[1]
argv2 = sys.argv[2]
if (type(argv1) is int and type(argv2) is int):
is_checkpoint = True
else:
is_checkpoint = False
directory_list = []
filenames_list = []
if is_checkpoint:
begin = int(sys.argv[1])
end = int(sys.argv[2])
print(sys.argv[4:])
print(begin, end)
virus_data_file = open(str(sys.argv[3]))
for argument in sys.argv[4:]:
directory_list.append(str(argument))
else:
virus_data_file = open(str(sys.argv[1]))
for argument in sys.argv[2:]:
directory_list.append(argument)
for directory in directory_list:
file_list = glob.glob(f"{directory}/*.json")
for file in file_list:
filenames_list.append(file)
# Read JSON file
data_list = []
for file_params in filenames_list:
with open(file_params) as f:
data = json.load(f)
data_list.append(data)
indexes = [range(len(data_list))]
virus_data = json.load(virus_data_file)
if is_checkpoint:
total_iterations = 0
parameters = []
for index, data in enumerate(data_list):
parameter = []
total_iterations += data["ensemble"]["runs"]
parameter.append(data)
parameter.append(index)
parameter.append(virus_data)
parameter.append(filenames_list)
parameter.append(is_checkpoint)
parameters.append(parameter)
manager = multiprocessing.Manager()
return_dict = manager.dict()
processes = []
for parameter in parameters:
process = multiprocessing.Process(target = runModelScenario, args = parameter)
process.start()
processes.append(process)
for _ in range(len(processes)):
process.join()
else:
processes = []
for index,data in enumerate(data_list):
p = multiprocessing.Process(target=runModelScenario, args=[data,index,virus_data,filenames_list,is_checkpoint])
p.start()
processes.append(p)
for process in processes:
process.join()