Skip to content

Latest commit

 

History

History
97 lines (63 loc) · 3.08 KB

README.md

File metadata and controls

97 lines (63 loc) · 3.08 KB
If you like our project, please give us a star ⭐ on GitHub for the latest update.

arXiv License: MIT

Training Pipeline

UNICON Framework

Framework

Installation Guide

  1. Create a conda environment

    conda create -n unicon 
    conda activate unicon
  2. After creating a virtual environment, install the required packages

    pip install -r requirements.txt

Download the Datasets

UNICON Training

  • Example run (CIFAR10 with 50% symmetric noise)

     python Train_cifar.py --dataset cifar10 --num_class 10 --data_path ./data/cifar10 --noise_mode 'sym' --r 0.5 
  • Example run (CIFAR100 with 90% symmetric noise)

     python Train_cifar.py --dataset cifar100 --num_class 100 --data_path ./data/cifar100 --noise_mode 'sym' --r 0.9 

This will throw an error as downloaded files will not be in the proper folder. That is why they must be manually moved to the "data_path".

  • Example Run (TinyImageNet with 50% symmetric noise)

     python Train_TinyImageNet.py --ratio 0.5
  • Example run (Clothing1M)

    python Train_clothing1M.py --batch_size 32 --num_epochs 200   
  • Example run (Webvision)

     python Train_webvision.py 

Reference

If you have any questions, do not hesitate to contact [email protected]

Also, if you find our work useful please consider citing our work:

@InProceedings{Karim_2022_CVPR,
    author    = {Karim, Nazmul and Rizve, Mamshad Nayeem and Rahnavard, Nazanin and Mian, Ajmal and Shah, Mubarak},
    title     = {UniCon: Combating Label Noise Through Uniform Selection and Contrastive Learning},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2022},
    pages     = {9676-9686}
}