-
Notifications
You must be signed in to change notification settings - Fork 491
/
Copy path__init__.py
718 lines (618 loc) · 32.4 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
from pathlib import Path
import anthropic
import cachetools
import math
import openai
import os
import json
import requests
import sseclient
import urllib
import traceback
import logging
from aleph_alpha_client import Client as aleph_client, CompletionRequest, Prompt
from datetime import datetime
from dataclasses import dataclass
from typing import Callable, Union
from .huggingface.hf import HFInference
from llama_cpp import Llama
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
@dataclass
class ProviderDetails:
'''
Args:
api_key (str): API key for provider
version_key (str): version key for provider
'''
api_key: str
version_key: str
@dataclass
class InferenceRequest:
'''
Args:
uuid (str): unique identifier for inference request
model_name (str): name of model to use
model_tag (str): tag of model to use
model_provider (str): provider of model to use
model_parameters (dict): parameters for model
prompt (str): prompt to use for inference
'''
uuid: str
model_name: str
model_tag: str
model_provider: str
model_parameters: dict
prompt: str
@dataclass
class ProablityDistribution:
'''
Args:
log_prob_sum (float): sum of log probabilities
simple_prob_sum (float): sum of simple probabilities
tokens (dict): dictionary of tokens and their probabilities
'''
log_prob_sum: float
simple_prob_sum: float
tokens: dict
@dataclass
class InferenceResult:
'''
Args:
uuid (str): unique identifier for inference request
model_name (str): name of model to use
model_tag (str): tag of model to use
model_provider (str): provider of model to use
token (str): token returned by inference
probability (float): probability of token
top_n_distribution (ProablityDistribution): top n distribution of tokens
'''
uuid: str
model_name: str
model_tag: str
model_provider: str
token: str
probability: Union[float, None]
top_n_distribution: Union[ProablityDistribution, None]
InferenceFunction = Callable[[str, InferenceRequest], None]
class InferenceAnnouncer:
def __init__(self, sse_topic):
self.sse_topic = sse_topic
self.cancel_cache = cachetools.TTLCache(maxsize=1000, ttl=60)
def __format_message__(self, event: str, infer_result: InferenceResult) -> str:
logger.debug("formatting message")
encoded = {
"message": infer_result.token,
"modelName": infer_result.model_name,
"modelTag": infer_result.model_tag,
"modelProvider": infer_result.model_provider,
}
if infer_result.probability is not None:
encoded["prob"] = round(math.exp(infer_result.probability) * 100, 2)
if infer_result.top_n_distribution is not None:
encoded["topNDistribution"] = {
"logProbSum": infer_result.top_n_distribution.log_prob_sum,
"simpleProbSum": infer_result.top_n_distribution.simple_prob_sum,
"tokens": infer_result.top_n_distribution.tokens
}
return json.dumps({"data": encoded, "type": event})
def announce(self, infer_result: InferenceResult, event: str):
if infer_result.uuid in self.cancel_cache:
return False
message = None
if event == "done":
message = json.dumps({"data": {}, "type": "done"})
else:
message = self.__format_message__(event=event, infer_result=infer_result)
logger.debug(f"Announcing {event} for uuid: {infer_result.uuid}, message: {message}")
self.sse_topic.publish(message)
return True
def cancel_callback(self, message):
if message['type'] == 'pmessage':
data = json.loads(message['data'])
uuid = data['uuid']
logger.info(f"Received cancel message for uuid: {uuid}")
self.cancel_cache[uuid] = True
class InferenceManager:
def __init__(self, sse_topic):
self.announcer = InferenceAnnouncer(sse_topic)
def __error_handler__(self, inference_fn: InferenceFunction, provider_details: ProviderDetails, inference_request: InferenceRequest):
logger.info(f"Requesting inference from {inference_request.model_name} on {inference_request.model_provider}")
infer_result = InferenceResult(
uuid=inference_request.uuid,
model_name=inference_request.model_name,
model_tag=inference_request.model_tag,
model_provider=inference_request.model_provider,
token=None,
probability=None,
top_n_distribution=None
)
if not self.announcer.announce(InferenceResult(
uuid=inference_request.uuid,
model_name=inference_request.model_name,
model_tag=inference_request.model_tag,
model_provider=inference_request.model_provider,
token="[INITIALIZING]",
probability=None,
top_n_distribution=None
), event="status"):
return
try:
inference_fn(provider_details, inference_request)
except openai.error.Timeout as e:
infer_result.token = f"[ERROR] OpenAI API request timed out: {e}"
logger.error(f"OpenAI API request timed out: {e}")
except openai.error.APIError as e:
infer_result.token = f"[ERROR] OpenAI API returned an API Error: {e}"
logger.error(f"OpenAI API returned an API Error: {e}")
except openai.error.APIConnectionError as e:
infer_result.token = f"[ERROR] OpenAI API request failed to connect: {e}"
logger.error(f"OpenAI API request failed to connect: {e}")
except openai.error.InvalidRequestError as e:
infer_result.token = f"[ERROR] OpenAI API request was invalid: {e}"
logger.error(f"OpenAI API request was invalid: {e}")
except openai.error.AuthenticationError as e:
infer_result.token = f"[ERROR] OpenAI API request was not authorized: {e}"
logger.error(f"OpenAI API request was not authorized: {e}")
except openai.error.PermissionError as e:
infer_result.token = f"[ERROR] OpenAI API request was not permitted: {e}"
logger.error(f"OpenAI API request was not permitted: {e}")
except openai.error.RateLimitError as e:
infer_result.token = f"[ERROR] OpenAI API request exceeded rate limit: {e}"
logger.error(f"OpenAI API request exceeded rate limit: {e}")
except requests.exceptions.RequestException as e:
logging.error(f"RequestException: {e}")
infer_result.token = f"[ERROR] No response from {infer_result.model_provider } after sixty seconds"
except ValueError as e:
if infer_result.model_provider == "huggingface-local":
infer_result.token = f"[ERROR] Error parsing response from local inference: {traceback.format_exc()}"
logger.error(f"Error parsing response from local inference: {traceback.format_exc()}")
else:
infer_result.token = f"[ERROR] Error parsing response from API: {e}"
logger.error(f"Error parsing response from API: {e}")
except Exception as e:
infer_result.token = f"[ERROR] {e}"
logger.exception(f"Error: {e}")
finally:
if infer_result.token is None:
infer_result.token = "[COMPLETED]"
self.announcer.announce(infer_result, event="status")
logger.info(f"Completed inference for {inference_request.model_name} on {inference_request.model_provider}")
def __openai_chat_generation__(self, provider_details: ProviderDetails, inference_request: InferenceRequest):
openai.api_key = provider_details.api_key
current_date = datetime.now().strftime("%Y-%m-%d")
if inference_request.model_name == "gpt-4":
system_content = "You are GPT-4, a large language model trained by OpenAI. Answer as concisely as possible"
else:
system_content = f"You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible. Knowledge cutoff: 2021-09-01 Current date: {current_date}"
response = openai.ChatCompletion.create(
model=inference_request.model_name,
messages = [
{"role": "system", "content": system_content},
{"role": "user", "content": inference_request.prompt},
],
temperature=inference_request.model_parameters['temperature'],
max_tokens=inference_request.model_parameters['maximumLength'],
top_p=inference_request.model_parameters['topP'],
frequency_penalty=inference_request.model_parameters['frequencyPenalty'],
presence_penalty=inference_request.model_parameters['presencePenalty'],
stream=True,
timeout=60
)
tokens = ""
cancelled = False
for event in response:
response = event['choices'][0]
if response['finish_reason'] == "stop":
break
delta = response['delta']
if "content" not in delta:
continue
generated_token = delta["content"]
tokens += generated_token
infer_response = InferenceResult(
uuid=inference_request.uuid,
model_name=inference_request.model_name,
model_tag=inference_request.model_tag,
model_provider=inference_request.model_provider,
token=generated_token,
probability=None,
top_n_distribution=None
)
if cancelled: continue
if not self.announcer.announce(infer_response, event="infer"):
cancelled = True
logger.info(f"Cancelled inference for {inference_request.uuid} - {inference_request.model_name}")
def __openai_text_generation__(self, provider_details: ProviderDetails, inference_request: InferenceRequest):
openai.api_key = provider_details.api_key
response = openai.Completion.create(
model=inference_request.model_name,
prompt=inference_request.prompt,
temperature=inference_request.model_parameters['temperature'],
max_tokens=inference_request.model_parameters['maximumLength'],
top_p=inference_request.model_parameters['topP'],
stop=None if len(inference_request.model_parameters['stopSequences']) == 0 else inference_request.model_parameters['stopSequences'],
frequency_penalty=inference_request.model_parameters['frequencyPenalty'],
presence_penalty=inference_request.model_parameters['presencePenalty'],
logprobs=5,
stream=True
)
cancelled = False
for event in response:
generated_token = event['choices'][0]['text']
infer_response = None
try:
chosen_log_prob = 0
likelihood = event['choices'][0]["logprobs"]['top_logprobs'][0]
prob_dist = ProablityDistribution(
log_prob_sum=0, simple_prob_sum=0, tokens={},
)
for token, log_prob in likelihood.items():
simple_prob = round(math.exp(log_prob) * 100, 2)
prob_dist.tokens[token] = [log_prob, simple_prob]
if token == generated_token:
chosen_log_prob = round(log_prob, 2)
prob_dist.simple_prob_sum += simple_prob
prob_dist.tokens = dict(
sorted(prob_dist.tokens.items(), key=lambda item: item[1][0], reverse=True)
)
prob_dist.log_prob_sum = chosen_log_prob
prob_dist.simple_prob_sum = round(prob_dist.simple_prob_sum, 2)
infer_response = InferenceResult(
uuid=inference_request.uuid,
model_name=inference_request.model_name,
model_tag=inference_request.model_tag,
model_provider=inference_request.model_provider,
token=generated_token,
probability=event['choices'][0]['logprobs']['token_logprobs'][0],
top_n_distribution=prob_dist
)
except IndexError:
infer_response = InferenceResult(
uuid=inference_request.uuid,
model_name=inference_request.model_name,
model_tag=inference_request.model_tag,
model_provider=inference_request.model_provider,
token=generated_token,
probability=-1,
top_n_distribution=None
)
if cancelled: continue
if not self.announcer.announce(infer_response, event="infer"):
cancelled = True
logger.info(f"Cancelled inference for {inference_request.uuid} - {inference_request.model_name}")
def openai_text_generation(self, provider_details: ProviderDetails, inference_request: InferenceRequest):
# TODO: Add a meta field to the inference so we know when a model is chat vs text
if inference_request.model_name in ["gpt-3.5-turbo", "gpt-4"]:
self.__error_handler__(self.__openai_chat_generation__, provider_details, inference_request)
else:
self.__error_handler__(self.__openai_text_generation__, provider_details, inference_request)
def __cohere_text_generation__(self, provider_details: ProviderDetails, inference_request: InferenceRequest):
with requests.post("https://api.cohere.ai/generate",
headers={
"Authorization": f"Bearer {provider_details.api_key}",
"Content-Type": "application/json",
"Cohere-Version": "2021-11-08",
},
data=json.dumps({
"prompt": inference_request.prompt,
"model": inference_request.model_name,
"temperature": float(inference_request.model_parameters['temperature']),
"p": float(inference_request.model_parameters['topP']),
"k": int(inference_request.model_parameters['topK']),
"stopSequences": inference_request.model_parameters['stopSequences'],
"frequencyPenalty": float(inference_request.model_parameters['frequencyPenalty']),
"presencePenalty": float(inference_request.model_parameters['presencePenalty']),
"return_likelihoods": "GENERATION",
"max_tokens": int(inference_request.model_parameters['maximumLength']),
"stream": True,
}),
stream=True
) as response:
if response.status_code != 200:
raise Exception(f"Request failed: {response.status_code} {response.reason}")
cancelled = False
for token in response.iter_lines():
token = token.decode('utf-8')
token_json = json.loads(token)
if cancelled: continue
if not self.announcer.announce(InferenceResult(
uuid=inference_request.uuid,
model_name=inference_request.model_name,
model_tag=inference_request.model_tag,
model_provider=inference_request.model_provider,
token=token_json['text'],
probability=None, #token_json['likelihood']
top_n_distribution=None
), event="infer"):
cancelled = True
logger.info(f"Cancelled inference for {inference_request.uuid} - {inference_request.model_name}")
def cohere_text_generation(self, provider_details: ProviderDetails, inference_request: InferenceRequest):
self.__error_handler__(self.__cohere_text_generation__, provider_details, inference_request)
def __huggingface_text_generation__(self, provider_details: ProviderDetails, inference_request: InferenceRequest):
response = requests.request("POST",
f"https://api-inference.huggingface.co/models/{inference_request.model_name}",
headers={"Authorization": f"Bearer {provider_details.api_key}"},
json={
"inputs": inference_request.prompt,
"stream": True,
"parameters": {
"max_length": min(inference_request.model_parameters['maximumLength'], 250), # max out at 250 tokens per request, we should handle for this in client side but just in case
"temperature": inference_request.model_parameters['temperature'],
"top_k": inference_request.model_parameters['topK'],
"top_p": inference_request.model_parameters['topP'],
"repetition_penalty": inference_request.model_parameters['repetitionPenalty'],
"stop_sequences": inference_request.model_parameters['stopSequences'],
},
"options": {
"use_cache": False
}
},
timeout=60
)
content_type = response.headers["content-type"]
cancelled = False
if response.status_code != 200:
raise Exception(f"Request failed: {response.status_code} {response.reason}")
if content_type == "application/json":
return_data = json.loads(response.content.decode("utf-8"))
outputs = return_data[0]["generated_text"]
outputs = outputs.removeprefix(inference_request.prompt)
self.announcer.announce(InferenceResult(
uuid=inference_request.uuid,
model_name=inference_request.model_name,
model_tag=inference_request.model_tag,
model_provider=inference_request.model_provider,
token=outputs,
probability=None,
top_n_distribution=None
), event="infer")
else:
total_tokens = 0
for response in response.iter_lines():
response = response.decode('utf-8')
if response == "":
continue
response_json = json.loads(response[5:])
if "error" in response:
error = response_json["error"]
raise Exception(f"{error}")
token = response_json['token']
total_tokens += 1
if token["special"]:
continue
if cancelled: continue
if not self.announcer.announce(
InferenceResult(
uuid=inference_request.uuid,
model_name=inference_request.model_name,
model_tag=inference_request.model_tag,
model_provider=inference_request.model_provider,
token=" " if token['id'] == 3 else token['text'],
probability=token['logprob'],
top_n_distribution=None,
),
event="infer",
):
cancelled = True
logger.info(f"Cancelled inference for {inference_request.uuid} - {inference_request.model_name}")
def huggingface_text_generation(self, provider_details: ProviderDetails, inference_request: InferenceRequest):
self.__error_handler__(self.__huggingface_text_generation__, provider_details, inference_request)
def __forefront_text_generation__(self, provider_details: ProviderDetails, inference_request: InferenceRequest):
with requests.post(
f"https://shared-api.forefront.link/organization/gPn2ZLSO3mTh/{inference_request.model_name}/completions/{provider_details.version_key}",
headers={
"Authorization": f"Bearer {provider_details.api_key}",
"Content-Type": "application/json",
},
data=json.dumps({
"text": inference_request.prompt,
"top_p": float(inference_request.model_parameters['topP']),
"top_k": int(inference_request.model_parameters['topK']),
"temperature": float(inference_request.model_parameters['temperature']),
"repetition_penalty": float(inference_request.model_parameters['repetitionPenalty']),
"length": int(inference_request.model_parameters['maximumLength']),
"stop": inference_request.model_parameters['stopSequences'],
"logprobs": 5,
"stream": True,
}),
stream=True
) as response:
if response.status_code != 200:
raise Exception(f"Request failed: {response.status_code} {response.reason}")
cancelled = False
total_tokens = 0
aggregate_string_length = 0
for packet in sseclient.SSEClient(response).events():
generated_token = None
probability = None
prob_dist = None
if packet.event == "update":
packet.data = urllib.parse.unquote(packet.data)
generated_token = packet.data[aggregate_string_length:]
aggregate_string_length = len(packet.data)
if not self.announcer.announce(InferenceResult(
uuid=inference_request.uuid,
model_name=inference_request.model_name,
model_tag=inference_request.model_tag,
model_provider=inference_request.model_provider,
token=generated_token,
probability=probability,
top_n_distribution=prob_dist
), event="infer"):
cancelled = True
logger.info(f"Cancelled inference for {inference_request.uuid} - {inference_request.model_name}")
elif packet.event == "message":
data = json.loads(packet.data)
logprobs = data["logprobs"][0]
tokens = logprobs["tokens"]
token_logprobs = logprobs["token_logprobs"]
new_tokens = tokens[total_tokens:]
for index, new_token in enumerate(new_tokens):
generated_token = new_token
probability = token_logprobs[total_tokens + index]
top_logprobs = logprobs["top_logprobs"][total_tokens + index]
chosen_log_prob = 0
prob_dist = ProablityDistribution(
log_prob_sum=0, simple_prob_sum=0, tokens={},
)
for token, log_prob in top_logprobs.items():
if log_prob == -3000.0: continue
simple_prob = round(math.exp(log_prob) * 100, 2)
prob_dist.tokens[token] = [log_prob, simple_prob]
if token == generated_token:
chosen_log_prob = round(log_prob, 2)
prob_dist.simple_prob_sum += simple_prob
prob_dist.tokens = dict(
sorted(prob_dist.tokens.items(), key=lambda item: item[1][0], reverse=True)
)
prob_dist.log_prob_sum = chosen_log_prob
prob_dist.simple_prob_sum = round(prob_dist.simple_prob_sum, 2)
if not self.announcer.announce(InferenceResult(
uuid=inference_request.uuid,
model_name=inference_request.model_name,
model_tag=inference_request.model_tag,
model_provider=inference_request.model_provider,
token=generated_token,
probability=probability,
top_n_distribution=prob_dist
), event="infer"):
cancelled = True
logger.info(f"Cancelled inference for {inference_request.uuid} - {inference_request.model_name}")
total_tokens = len(tokens)
elif packet.event == "end":
break
else:
continue
if cancelled: continue
def forefront_text_generation(self, provider_details: ProviderDetails, inference_request: InferenceRequest):
self.__error_handler__(self.__forefront_text_generation__, provider_details, inference_request)
def __local_text_generation__(self, provider_details: ProviderDetails, inference_request: InferenceRequest):
cancelled = False
logger.info(f"Starting inference for {inference_request.uuid} - {inference_request.model_name}")
hf = HFInference(inference_request.model_name)
output = hf.generate(
prompt=inference_request.prompt,
max_length=int(inference_request.model_parameters['maximumLength']),
top_p=float(inference_request.model_parameters['topP']),
top_k=int(inference_request.model_parameters['topK']),
temperature=float(inference_request.model_parameters['temperature']),
repetition_penalty=float(inference_request.model_parameters['repetitionPenalty']),
stop_sequences=None,
)
infer_response = None
for generated_token in output:
if cancelled: break
infer_response = InferenceResult(
uuid=inference_request.uuid,
model_name=inference_request.model_name,
model_tag=inference_request.model_tag,
model_provider=inference_request.model_provider,
token=generated_token,
probability=None,
top_n_distribution=None
)
if not self.announcer.announce(infer_response, event="infer"):
cancelled = True
logger.info(f"Cancelled inference for {inference_request.uuid} - {inference_request.model_name}")
def local_text_generation(self, provider_details: ProviderDetails, inference_request: InferenceRequest):
self.__error_handler__(self.__local_text_generation__, provider_details, inference_request)
def __local_text_generation_llama__(self, provider_details: ProviderDetails, inference_request: InferenceRequest):
cancelled = False
env_model_bin_path = inference_request.model_name.upper() + '_MODEL_BIN_PATH'
env_model_prompt_path = inference_request.model_name.upper() + '_MODEL_PROMPT_PATH'
llama_modlel_path = os.environ.get(env_model_bin_path)
llama_prompt_path = os.environ.get(env_model_prompt_path)
if not llama_modlel_path:
logger.error(f"please add {env_model_bin_path} to the dot env file of environment variable if you want to use this model!")
return
if not llama_prompt_path:
logger.warning(f"please add {llama_prompt_path} prompt template file path with {{prompt}} format string to the dot env file of environment variable if you want to use this model with custom prompt format.")
llama_prompt_template = "{prompt}"
else:
with open(Path(llama_prompt_path)) as f:
llama_prompt_template = f.read()
llm = Llama(model_path=llama_modlel_path)
prompt_final = llama_prompt_template.format(prompt=inference_request.prompt)
stream = llm(
prompt_final,
max_tokens=inference_request.model_parameters['maximumLength'],
temperature=float(inference_request.model_parameters['temperature']),
top_p=float(inference_request.model_parameters['topP']),
repeat_penalty=float(inference_request.model_parameters['repetitionPenalty']),
stop=inference_request.model_parameters['stopSequences'],
stream=True,
)
for output in stream:
if cancelled: break
infer_response = InferenceResult(
uuid=inference_request.uuid,
model_name=inference_request.model_name,
model_tag=inference_request.model_tag,
model_provider=inference_request.model_provider,
token=output['choices'][0]['text'],
probability=None,
top_n_distribution=None
)
if not self.announcer.announce(infer_response, event="infer"):
cancelled = True
logger.info(f"Cancelled inference for {inference_request.uuid} - {inference_request.model_name}")
def local_text_generation_llama(self, provider_details: ProviderDetails, inference_request: InferenceRequest):
self.__error_handler__(self.__local_text_generation_llama__, provider_details, inference_request)
def __anthropic_text_generation__(self, provider_details: ProviderDetails, inference_request: InferenceRequest):
c = anthropic.Client(provider_details.api_key)
response = c.completion_stream(
prompt=f"{anthropic.HUMAN_PROMPT} {inference_request.prompt}{anthropic.AI_PROMPT}",
stopSequences=[anthropic.HUMAN_PROMPT] + inference_request.model_parameters['stopSequences'],
temperature=float(inference_request.model_parameters['temperature']),
topP=float(inference_request.model_parameters['topP']),
topK=int(inference_request.model_parameters['topK']),
max_tokens_to_sample=inference_request.model_parameters['maximumLength'],
model=inference_request.model_name,
stream=True,
)
completion = ""
cancelled = False
for data in response:
new_completion = data["completion"]
generated_token = new_completion[len(completion):]
if cancelled: continue
if not self.announcer.announce(InferenceResult(
uuid=inference_request.uuid,
model_name=inference_request.model_name,
model_tag=inference_request.model_tag,
model_provider=inference_request.model_provider,
token=generated_token,
probability=None,
top_n_distribution=None
), event="infer"):
cancelled = True
logger.info(f"Cancelled inference for {inference_request.uuid} - {inference_request.model_name}")
completion = new_completion
def anthropic_text_generation(self, provider_details: ProviderDetails, inference_request: InferenceRequest):
self.__error_handler__(self.__anthropic_text_generation__, provider_details, inference_request)
def __aleph_alpha_text_generation__(self, provider_details: ProviderDetails, inference_request: InferenceRequest):
client = aleph_client(provider_details.api_key)
request = CompletionRequest(
prompt = Prompt.from_text(inference_request.prompt),
temperature= inference_request.model_parameters['temperature'],
maximum_tokens=inference_request.model_parameters['maximumLength'],
top_p=float(inference_request.model_parameters['topP']),
top_k=int(inference_request.model_parameters['topK']),
presence_penalty=float(inference_request.model_parameters['repetitionPenalty']),
stop_sequences=inference_request.model_parameters['stopSequences']
)
response = client.complete(request, model=inference_request.model_name)
self.announcer.announce(InferenceResult(
uuid=inference_request.uuid,
model_name=inference_request.model_name,
model_tag=inference_request.model_tag,
model_provider=inference_request.model_provider,
token=response.completions[0].completion,
probability=None,
top_n_distribution=None
), event="infer")
def aleph_alpha_text_generation(self, provider_details: ProviderDetails, inference_request: InferenceRequest):
self.__error_handler__(self.__aleph_alpha_text_generation__, provider_details, inference_request)
def get_announcer(self):
return self.announcer