-
Notifications
You must be signed in to change notification settings - Fork 28
/
run_ie_check.py
146 lines (111 loc) · 3.94 KB
/
run_ie_check.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from montecarlo.node import Node
from montecarlo.montecarlo import MonteCarlo
from lang import can_be_solution, filter_code
from lang import score_func as uncached_score_func
from common_cache import create_cached_func
score_func, cache_stats, reset_cache = create_cached_func(uncached_score_func)
from common_interactive import diffprompt
from prompts import prompt, min_lines, expansion_count, check_func, sanity_check
from common import limit_depth, max_completion_depth, limit_tokens
from common_stats import stats
import llm
import wandb
import time
import common_wandb
from cmdline import args
node_dups_counter = 0
def generate_complete(text, montecarlo, current_completion_depth=1):
if current_completion_depth >= max_completion_depth:
return None, current_completion_depth
prev = text
texts = llm.generate(text, 1)
text = texts[0]
score = score_func(text)
print(diffprompt(prev, texts))
if score is not None:
if score < 0:
return None, current_completion_depth
else:
if can_be_solution(text, min_lines, check_func):
montecarlo.solution = text
return text, current_completion_depth
else:
return generate_complete(text, montecarlo, current_completion_depth + 1)
def child_finder(node, montecarlo):
if limit_depth(node):
return
pre_gen_time = time.time()
pre_gen_toks = llm.token_counter
text, depth = generate_complete(node.state, montecarlo)
gen_stat = common_wandb.compute_gen_stat(pre_gen_time, pre_gen_toks, text, depth)
if text is None:
node.update_win_value(-1)
else:
child = Node(text)
if node.is_widen_node:
node.visits += 1
node.parent.add_child(child)
# Check siblings for duplicates
for c in node.parent.children:
if c.state == text:
global node_dups_counter
node_dups_counter += 1
print("found string-duplicated node:")
print(text)
else:
node.add_child(child)
# Update values
child.update_win_value(1)
child.update_policy_value(1)
# Add widen node
widen = Node(text)
widen.is_widen_node = True
child.add_child(widen)
widen.update_policy_value(args.widen_policy_value)
common_wandb.log_tree(montecarlo, gen_stat, node)
# Check on token limit after this generation
if limit_tokens():
if montecarlo.solution is None:
montecarlo.solution = "Token limit reached"
print("Token limit reached, no solution found")
def main_iter(prompt):
init_time = time.time()
montecarlo = MonteCarlo(Node(prompt))
# Add widen node to root
widen = Node(prompt)
widen.is_widen_node = True
montecarlo.root_node.add_child(widen)
widen.update_policy_value(args.widen_policy_value)
# Update child finder
montecarlo.child_finder = child_finder
# Run search
montecarlo.simulate(expansion_count)
common_wandb.compute_summary(montecarlo, node_dups_counter, init_time)
stats(montecarlo)
print("cache stats", cache_stats)
if montecarlo.solution:
text = montecarlo.solution
print("CHOSEN SOLUTION")
print(text)
return text
return None
def main():
my_prompt = prompt
pending = sanity_check
while True:
print("\n\n\nNext round")
my_prompt = main_iter(my_prompt)
if my_prompt is None:
wandb.log({"checks_missing": len(pending) + 1})
print("FAILURE; aborting")
if len(pending) == 0:
break
my_prompt = "```dafny\n" + filter_code(my_prompt) + "```\n\n### PROMPT: " + pending[0]
pending = pending[1:]
if args.use_wandb:
wandb.log({"checks_missing": len(pending)})
print("all done")
print("FINAL RESULT")
print(my_prompt)
if __name__ == "__main__":
main()