diff --git a/02_activities/assignments/assignment_1.ipynb b/02_activities/assignments/assignment_1.ipynb
index 28d4df017..9144ae9e2 100644
--- a/02_activities/assignments/assignment_1.ipynb
+++ b/02_activities/assignments/assignment_1.ipynb
@@ -34,7 +34,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 70,
"id": "4a3485d6-ba58-4660-a983-5680821c5719",
"metadata": {},
"outputs": [],
@@ -56,10 +56,288 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 71,
"id": "a431d282-f9ca-4d5d-8912-71ffc9d8ea19",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " alcohol | \n",
+ " malic_acid | \n",
+ " ash | \n",
+ " alcalinity_of_ash | \n",
+ " magnesium | \n",
+ " total_phenols | \n",
+ " flavanoids | \n",
+ " nonflavanoid_phenols | \n",
+ " proanthocyanins | \n",
+ " color_intensity | \n",
+ " hue | \n",
+ " od280/od315_of_diluted_wines | \n",
+ " proline | \n",
+ " class | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 14.23 | \n",
+ " 1.71 | \n",
+ " 2.43 | \n",
+ " 15.6 | \n",
+ " 127.0 | \n",
+ " 2.80 | \n",
+ " 3.06 | \n",
+ " 0.28 | \n",
+ " 2.29 | \n",
+ " 5.64 | \n",
+ " 1.04 | \n",
+ " 3.92 | \n",
+ " 1065.0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100.0 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.38 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050.0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 13.16 | \n",
+ " 2.36 | \n",
+ " 2.67 | \n",
+ " 18.6 | \n",
+ " 101.0 | \n",
+ " 2.80 | \n",
+ " 3.24 | \n",
+ " 0.30 | \n",
+ " 2.81 | \n",
+ " 5.68 | \n",
+ " 1.03 | \n",
+ " 3.17 | \n",
+ " 1185.0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113.0 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.80 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480.0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 13.24 | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118.0 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.32 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735.0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 173 | \n",
+ " 13.71 | \n",
+ " 5.65 | \n",
+ " 2.45 | \n",
+ " 20.5 | \n",
+ " 95.0 | \n",
+ " 1.68 | \n",
+ " 0.61 | \n",
+ " 0.52 | \n",
+ " 1.06 | \n",
+ " 7.70 | \n",
+ " 0.64 | \n",
+ " 1.74 | \n",
+ " 740.0 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 174 | \n",
+ " 13.40 | \n",
+ " 3.91 | \n",
+ " 2.48 | \n",
+ " 23.0 | \n",
+ " 102.0 | \n",
+ " 1.80 | \n",
+ " 0.75 | \n",
+ " 0.43 | \n",
+ " 1.41 | \n",
+ " 7.30 | \n",
+ " 0.70 | \n",
+ " 1.56 | \n",
+ " 750.0 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 175 | \n",
+ " 13.27 | \n",
+ " 4.28 | \n",
+ " 2.26 | \n",
+ " 20.0 | \n",
+ " 120.0 | \n",
+ " 1.59 | \n",
+ " 0.69 | \n",
+ " 0.43 | \n",
+ " 1.35 | \n",
+ " 10.20 | \n",
+ " 0.59 | \n",
+ " 1.56 | \n",
+ " 835.0 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 176 | \n",
+ " 13.17 | \n",
+ " 2.59 | \n",
+ " 2.37 | \n",
+ " 20.0 | \n",
+ " 120.0 | \n",
+ " 1.65 | \n",
+ " 0.68 | \n",
+ " 0.53 | \n",
+ " 1.46 | \n",
+ " 9.30 | \n",
+ " 0.60 | \n",
+ " 1.62 | \n",
+ " 840.0 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 177 | \n",
+ " 14.13 | \n",
+ " 4.10 | \n",
+ " 2.74 | \n",
+ " 24.5 | \n",
+ " 96.0 | \n",
+ " 2.05 | \n",
+ " 0.76 | \n",
+ " 0.56 | \n",
+ " 1.35 | \n",
+ " 9.20 | \n",
+ " 0.61 | \n",
+ " 1.60 | \n",
+ " 560.0 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
178 rows × 14 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols \\\n",
+ "0 14.23 1.71 2.43 15.6 127.0 2.80 \n",
+ "1 13.20 1.78 2.14 11.2 100.0 2.65 \n",
+ "2 13.16 2.36 2.67 18.6 101.0 2.80 \n",
+ "3 14.37 1.95 2.50 16.8 113.0 3.85 \n",
+ "4 13.24 2.59 2.87 21.0 118.0 2.80 \n",
+ ".. ... ... ... ... ... ... \n",
+ "173 13.71 5.65 2.45 20.5 95.0 1.68 \n",
+ "174 13.40 3.91 2.48 23.0 102.0 1.80 \n",
+ "175 13.27 4.28 2.26 20.0 120.0 1.59 \n",
+ "176 13.17 2.59 2.37 20.0 120.0 1.65 \n",
+ "177 14.13 4.10 2.74 24.5 96.0 2.05 \n",
+ "\n",
+ " flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue \\\n",
+ "0 3.06 0.28 2.29 5.64 1.04 \n",
+ "1 2.76 0.26 1.28 4.38 1.05 \n",
+ "2 3.24 0.30 2.81 5.68 1.03 \n",
+ "3 3.49 0.24 2.18 7.80 0.86 \n",
+ "4 2.69 0.39 1.82 4.32 1.04 \n",
+ ".. ... ... ... ... ... \n",
+ "173 0.61 0.52 1.06 7.70 0.64 \n",
+ "174 0.75 0.43 1.41 7.30 0.70 \n",
+ "175 0.69 0.43 1.35 10.20 0.59 \n",
+ "176 0.68 0.53 1.46 9.30 0.60 \n",
+ "177 0.76 0.56 1.35 9.20 0.61 \n",
+ "\n",
+ " od280/od315_of_diluted_wines proline class \n",
+ "0 3.92 1065.0 0 \n",
+ "1 3.40 1050.0 0 \n",
+ "2 3.17 1185.0 0 \n",
+ "3 3.45 1480.0 0 \n",
+ "4 2.93 735.0 0 \n",
+ ".. ... ... ... \n",
+ "173 1.74 740.0 2 \n",
+ "174 1.56 750.0 2 \n",
+ "175 1.56 835.0 2 \n",
+ "176 1.62 840.0 2 \n",
+ "177 1.60 560.0 2 \n",
+ "\n",
+ "[178 rows x 14 columns]"
+ ]
+ },
+ "execution_count": 71,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from sklearn.datasets import load_wine\n",
"\n",
@@ -91,12 +369,13 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 72,
"id": "56916892",
"metadata": {},
"outputs": [],
"source": [
- "# Your answer here"
+ "# Your answer here\n",
+ "# 178 observations"
]
},
{
@@ -109,12 +388,13 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 73,
"id": "df0ef103",
"metadata": {},
"outputs": [],
"source": [
- "# Your answer here"
+ "# Your answer here\n",
+ "# 14 variables"
]
},
{
@@ -127,12 +407,47 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 74,
"id": "47989426",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "dtype('int64')"
+ ]
+ },
+ "execution_count": 74,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Your answer here\n",
+ "wine_df['class'].dtype\n",
+ "# int64 is the variable type"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 75,
+ "id": "682e1b8a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([0, 1, 2])"
+ ]
+ },
+ "execution_count": 75,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# Your answer here"
+ "wine_df[\"class\"].unique()\n",
+ "# the unique values are 0, 1, and 2"
]
},
{
@@ -146,12 +461,13 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 76,
"id": "bd7b0910",
"metadata": {},
"outputs": [],
"source": [
- "# Your answer here"
+ "# Your answer here\n",
+ "# 13 predictor variables"
]
},
{
@@ -175,10 +491,37 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 77,
"id": "cc899b59",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " alcohol malic_acid ash alcalinity_of_ash magnesium \\\n",
+ "0 1.518613 -0.562250 0.232053 -1.169593 1.913905 \n",
+ "1 0.246290 -0.499413 -0.827996 -2.490847 0.018145 \n",
+ "2 0.196879 0.021231 1.109334 -0.268738 0.088358 \n",
+ "3 1.691550 -0.346811 0.487926 -0.809251 0.930918 \n",
+ "4 0.295700 0.227694 1.840403 0.451946 1.281985 \n",
+ "\n",
+ " total_phenols flavanoids nonflavanoid_phenols proanthocyanins \\\n",
+ "0 0.808997 1.034819 -0.659563 1.224884 \n",
+ "1 0.568648 0.733629 -0.820719 -0.544721 \n",
+ "2 0.808997 1.215533 -0.498407 2.135968 \n",
+ "3 2.491446 1.466525 -0.981875 1.032155 \n",
+ "4 0.808997 0.663351 0.226796 0.401404 \n",
+ "\n",
+ " color_intensity hue od280/od315_of_diluted_wines proline \n",
+ "0 0.251717 0.362177 1.847920 1.013009 \n",
+ "1 -0.293321 0.406051 1.113449 0.965242 \n",
+ "2 0.269020 0.318304 0.788587 1.395148 \n",
+ "3 1.186068 -0.427544 1.184071 2.334574 \n",
+ "4 -0.319276 0.362177 0.449601 -0.037874 \n"
+ ]
+ }
+ ],
"source": [
"# Select predictors (excluding the last column)\n",
"predictors = wine_df.iloc[:, :-1]\n",
@@ -187,10 +530,237 @@
"scaler = StandardScaler()\n",
"predictors_standardized = pd.DataFrame(scaler.fit_transform(predictors), columns=predictors.columns)\n",
"\n",
+ "\n",
"# Display the head of the standardized predictors\n",
"print(predictors_standardized.head())"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 78,
+ "id": "c5a50c3c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " alcohol | \n",
+ " malic_acid | \n",
+ " ash | \n",
+ " alcalinity_of_ash | \n",
+ " magnesium | \n",
+ " total_phenols | \n",
+ " flavanoids | \n",
+ " nonflavanoid_phenols | \n",
+ " proanthocyanins | \n",
+ " color_intensity | \n",
+ " hue | \n",
+ " od280/od315_of_diluted_wines | \n",
+ " proline | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | count | \n",
+ " 1.780000e+02 | \n",
+ " 1.780000e+02 | \n",
+ " 1.780000e+02 | \n",
+ " 1.780000e+02 | \n",
+ " 1.780000e+02 | \n",
+ " 1.780000e+02 | \n",
+ " 1.780000e+02 | \n",
+ " 1.780000e+02 | \n",
+ " 1.780000e+02 | \n",
+ " 1.780000e+02 | \n",
+ " 1.780000e+02 | \n",
+ " 1.780000e+02 | \n",
+ " 1.780000e+02 | \n",
+ "
\n",
+ " \n",
+ " | mean | \n",
+ " 7.943708e-15 | \n",
+ " 3.592632e-16 | \n",
+ " -4.066660e-15 | \n",
+ " -7.983626e-17 | \n",
+ " -7.983626e-17 | \n",
+ " -3.991813e-17 | \n",
+ " 9.979533e-16 | \n",
+ " -5.588538e-16 | \n",
+ " -1.656602e-15 | \n",
+ " -3.442939e-16 | \n",
+ " 1.636643e-15 | \n",
+ " 2.235415e-15 | \n",
+ " -1.197544e-16 | \n",
+ "
\n",
+ " \n",
+ " | std | \n",
+ " 1.002821e+00 | \n",
+ " 1.002821e+00 | \n",
+ " 1.002821e+00 | \n",
+ " 1.002821e+00 | \n",
+ " 1.002821e+00 | \n",
+ " 1.002821e+00 | \n",
+ " 1.002821e+00 | \n",
+ " 1.002821e+00 | \n",
+ " 1.002821e+00 | \n",
+ " 1.002821e+00 | \n",
+ " 1.002821e+00 | \n",
+ " 1.002821e+00 | \n",
+ " 1.002821e+00 | \n",
+ "
\n",
+ " \n",
+ " | min | \n",
+ " -2.434235e+00 | \n",
+ " -1.432983e+00 | \n",
+ " -3.679162e+00 | \n",
+ " -2.671018e+00 | \n",
+ " -2.088255e+00 | \n",
+ " -2.107246e+00 | \n",
+ " -1.695971e+00 | \n",
+ " -1.868234e+00 | \n",
+ " -2.069034e+00 | \n",
+ " -1.634288e+00 | \n",
+ " -2.094732e+00 | \n",
+ " -1.895054e+00 | \n",
+ " -1.493188e+00 | \n",
+ "
\n",
+ " \n",
+ " | 25% | \n",
+ " -7.882448e-01 | \n",
+ " -6.587486e-01 | \n",
+ " -5.721225e-01 | \n",
+ " -6.891372e-01 | \n",
+ " -8.244151e-01 | \n",
+ " -8.854682e-01 | \n",
+ " -8.275393e-01 | \n",
+ " -7.401412e-01 | \n",
+ " -5.972835e-01 | \n",
+ " -7.951025e-01 | \n",
+ " -7.675624e-01 | \n",
+ " -9.522483e-01 | \n",
+ " -7.846378e-01 | \n",
+ "
\n",
+ " \n",
+ " | 50% | \n",
+ " 6.099988e-02 | \n",
+ " -4.231120e-01 | \n",
+ " -2.382132e-02 | \n",
+ " 1.518295e-03 | \n",
+ " -1.222817e-01 | \n",
+ " 9.595986e-02 | \n",
+ " 1.061497e-01 | \n",
+ " -1.760948e-01 | \n",
+ " -6.289785e-02 | \n",
+ " -1.592246e-01 | \n",
+ " 3.312687e-02 | \n",
+ " 2.377348e-01 | \n",
+ " -2.337204e-01 | \n",
+ "
\n",
+ " \n",
+ " | 75% | \n",
+ " 8.361286e-01 | \n",
+ " 6.697929e-01 | \n",
+ " 6.981085e-01 | \n",
+ " 6.020883e-01 | \n",
+ " 5.096384e-01 | \n",
+ " 8.089974e-01 | \n",
+ " 8.490851e-01 | \n",
+ " 6.095413e-01 | \n",
+ " 6.291754e-01 | \n",
+ " 4.939560e-01 | \n",
+ " 7.131644e-01 | \n",
+ " 7.885875e-01 | \n",
+ " 7.582494e-01 | \n",
+ "
\n",
+ " \n",
+ " | max | \n",
+ " 2.259772e+00 | \n",
+ " 3.109192e+00 | \n",
+ " 3.156325e+00 | \n",
+ " 3.154511e+00 | \n",
+ " 4.371372e+00 | \n",
+ " 2.539515e+00 | \n",
+ " 3.062832e+00 | \n",
+ " 2.402403e+00 | \n",
+ " 3.485073e+00 | \n",
+ " 3.435432e+00 | \n",
+ " 3.301694e+00 | \n",
+ " 1.960915e+00 | \n",
+ " 2.971473e+00 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " alcohol malic_acid ash alcalinity_of_ash \\\n",
+ "count 1.780000e+02 1.780000e+02 1.780000e+02 1.780000e+02 \n",
+ "mean 7.943708e-15 3.592632e-16 -4.066660e-15 -7.983626e-17 \n",
+ "std 1.002821e+00 1.002821e+00 1.002821e+00 1.002821e+00 \n",
+ "min -2.434235e+00 -1.432983e+00 -3.679162e+00 -2.671018e+00 \n",
+ "25% -7.882448e-01 -6.587486e-01 -5.721225e-01 -6.891372e-01 \n",
+ "50% 6.099988e-02 -4.231120e-01 -2.382132e-02 1.518295e-03 \n",
+ "75% 8.361286e-01 6.697929e-01 6.981085e-01 6.020883e-01 \n",
+ "max 2.259772e+00 3.109192e+00 3.156325e+00 3.154511e+00 \n",
+ "\n",
+ " magnesium total_phenols flavanoids nonflavanoid_phenols \\\n",
+ "count 1.780000e+02 1.780000e+02 1.780000e+02 1.780000e+02 \n",
+ "mean -7.983626e-17 -3.991813e-17 9.979533e-16 -5.588538e-16 \n",
+ "std 1.002821e+00 1.002821e+00 1.002821e+00 1.002821e+00 \n",
+ "min -2.088255e+00 -2.107246e+00 -1.695971e+00 -1.868234e+00 \n",
+ "25% -8.244151e-01 -8.854682e-01 -8.275393e-01 -7.401412e-01 \n",
+ "50% -1.222817e-01 9.595986e-02 1.061497e-01 -1.760948e-01 \n",
+ "75% 5.096384e-01 8.089974e-01 8.490851e-01 6.095413e-01 \n",
+ "max 4.371372e+00 2.539515e+00 3.062832e+00 2.402403e+00 \n",
+ "\n",
+ " proanthocyanins color_intensity hue \\\n",
+ "count 1.780000e+02 1.780000e+02 1.780000e+02 \n",
+ "mean -1.656602e-15 -3.442939e-16 1.636643e-15 \n",
+ "std 1.002821e+00 1.002821e+00 1.002821e+00 \n",
+ "min -2.069034e+00 -1.634288e+00 -2.094732e+00 \n",
+ "25% -5.972835e-01 -7.951025e-01 -7.675624e-01 \n",
+ "50% -6.289785e-02 -1.592246e-01 3.312687e-02 \n",
+ "75% 6.291754e-01 4.939560e-01 7.131644e-01 \n",
+ "max 3.485073e+00 3.435432e+00 3.301694e+00 \n",
+ "\n",
+ " od280/od315_of_diluted_wines proline \n",
+ "count 1.780000e+02 1.780000e+02 \n",
+ "mean 2.235415e-15 -1.197544e-16 \n",
+ "std 1.002821e+00 1.002821e+00 \n",
+ "min -1.895054e+00 -1.493188e+00 \n",
+ "25% -9.522483e-01 -7.846378e-01 \n",
+ "50% 2.377348e-01 -2.337204e-01 \n",
+ "75% 7.885875e-01 7.582494e-01 \n",
+ "max 1.960915e+00 2.971473e+00 "
+ ]
+ },
+ "execution_count": 78,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "predictors_standardized.describe()"
+ ]
+ },
{
"cell_type": "markdown",
"id": "9981ca48",
@@ -204,7 +774,7 @@
"id": "403ef0bb",
"metadata": {},
"source": [
- "> Your answer here..."
+ "> Your answer here: so that your variables are not weighted differently and are balanced. Final results will be more reliable. Without standardization, models will be dominated by varaibles with higher scales."
]
},
{
@@ -220,7 +790,7 @@
"id": "fdee5a15",
"metadata": {},
"source": [
- "> Your answer here..."
+ "> Your answer here: That is because we intend to determine the Class variable of our wine."
]
},
{
@@ -236,7 +806,7 @@
"id": "f0676c21",
"metadata": {},
"source": [
- "> Your answer here..."
+ "> Your answer here: It is important to set a seed to randomize our function the same way each time - so that it is reprodicible. No, the particular seed value is not important since using the same value is what is important to remain consistent in our tests and training."
]
},
{
@@ -251,7 +821,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 79,
"id": "72c101f2",
"metadata": {},
"outputs": [],
@@ -261,7 +831,18 @@
"\n",
"# split the data into a training and testing set. hint: use train_test_split !\n",
"\n",
- "# Your code here ..."
+ "# Your code here ...\n",
+ "X = predictors_standardized \n",
+ "y = wine_df['class']\n",
+ "\n",
+ "X_train, X_test, y_train, y_test = train_test_split(\n",
+ " X,\n",
+ " y,\n",
+ " train_size= 0.75, \n",
+ " shuffle= True, \n",
+ " stratify = y,\n",
+ " random_state = 123\n",
+ " )"
]
},
{
@@ -284,12 +865,32 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 80,
"id": "08818c64",
"metadata": {},
"outputs": [],
"source": [
- "# Your code here..."
+ "# Your code here...\n",
+ "\n",
+ "knn = KNeighborsClassifier(n_neighbors = 50)\n",
+ "\n",
+ "parameter_grid = {\n",
+ " \"n_neighbors\" : range(1, 51)\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 81,
+ "id": "0417a55a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "wine_tune_grid = GridSearchCV(\n",
+ " estimator = knn,\n",
+ " param_grid = parameter_grid,\n",
+ " cv = 10\n",
+ ")"
]
},
{
@@ -305,12 +906,257 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 82,
+ "id": "63650cd6",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(pandas.core.frame.DataFrame, pandas.core.series.Series)"
+ ]
+ },
+ "execution_count": 82,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "type(X_train), type(y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 83,
+ "id": "8100cdb7",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "((133, 13), (133,))"
+ ]
+ },
+ "execution_count": 83,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "X_train.shape, y_train.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 84,
+ "id": "ac8eeb30",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " alcohol | \n",
+ " malic_acid | \n",
+ " ash | \n",
+ " alcalinity_of_ash | \n",
+ " magnesium | \n",
+ " total_phenols | \n",
+ " flavanoids | \n",
+ " nonflavanoid_phenols | \n",
+ " proanthocyanins | \n",
+ " color_intensity | \n",
+ " hue | \n",
+ " od280/od315_of_diluted_wines | \n",
+ " proline | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 78 | \n",
+ " -0.828391 | \n",
+ " -1.208567 | \n",
+ " -1.522511 | \n",
+ " -1.409821 | \n",
+ " 2.545825 | \n",
+ " -0.633101 | \n",
+ " -0.179981 | \n",
+ " -0.095517 | \n",
+ " 2.048364 | \n",
+ " -0.717240 | \n",
+ " 0.449924 | \n",
+ " -0.426113 | \n",
+ " 0.009893 | \n",
+ "
\n",
+ " \n",
+ " | 0 | \n",
+ " 1.518613 | \n",
+ " -0.562250 | \n",
+ " 0.232053 | \n",
+ " -1.169593 | \n",
+ " 1.913905 | \n",
+ " 0.808997 | \n",
+ " 1.034819 | \n",
+ " -0.659563 | \n",
+ " 1.224884 | \n",
+ " 0.251717 | \n",
+ " 0.362177 | \n",
+ " 1.847920 | \n",
+ " 1.013009 | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 0.777454 | \n",
+ " -0.472483 | \n",
+ " 1.218995 | \n",
+ " -0.689137 | \n",
+ " 0.860705 | \n",
+ " 0.889114 | \n",
+ " 0.884224 | \n",
+ " -0.498407 | \n",
+ " -0.229346 | \n",
+ " 0.969783 | \n",
+ " 1.415139 | \n",
+ " 0.378979 | \n",
+ " 1.793210 | \n",
+ "
\n",
+ " \n",
+ " | 13 | \n",
+ " 2.160950 | \n",
+ " -0.544297 | \n",
+ " 0.085839 | \n",
+ " -2.430790 | \n",
+ " -0.613775 | \n",
+ " 1.289697 | \n",
+ " 1.667318 | \n",
+ " 0.549108 | \n",
+ " 2.135968 | \n",
+ " 0.147900 | \n",
+ " 1.283518 | \n",
+ " 0.167113 | \n",
+ " 1.283691 | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 1.703902 | \n",
+ " -0.418624 | \n",
+ " 0.049285 | \n",
+ " -2.250619 | \n",
+ " 0.158572 | \n",
+ " 1.610163 | \n",
+ " 1.617120 | \n",
+ " -0.578985 | \n",
+ " 2.398780 | \n",
+ " 1.056297 | \n",
+ " 1.064151 | \n",
+ " 0.548472 | \n",
+ " 2.547935 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " alcohol malic_acid ash alcalinity_of_ash magnesium \\\n",
+ "78 -0.828391 -1.208567 -1.522511 -1.409821 2.545825 \n",
+ "0 1.518613 -0.562250 0.232053 -1.169593 1.913905 \n",
+ "15 0.777454 -0.472483 1.218995 -0.689137 0.860705 \n",
+ "13 2.160950 -0.544297 0.085839 -2.430790 -0.613775 \n",
+ "14 1.703902 -0.418624 0.049285 -2.250619 0.158572 \n",
+ "\n",
+ " total_phenols flavanoids nonflavanoid_phenols proanthocyanins \\\n",
+ "78 -0.633101 -0.179981 -0.095517 2.048364 \n",
+ "0 0.808997 1.034819 -0.659563 1.224884 \n",
+ "15 0.889114 0.884224 -0.498407 -0.229346 \n",
+ "13 1.289697 1.667318 0.549108 2.135968 \n",
+ "14 1.610163 1.617120 -0.578985 2.398780 \n",
+ "\n",
+ " color_intensity hue od280/od315_of_diluted_wines proline \n",
+ "78 -0.717240 0.449924 -0.426113 0.009893 \n",
+ "0 0.251717 0.362177 1.847920 1.013009 \n",
+ "15 0.969783 1.415139 0.378979 1.793210 \n",
+ "13 0.147900 1.283518 0.167113 1.283691 \n",
+ "14 1.056297 1.064151 0.548472 2.547935 "
+ ]
+ },
+ "execution_count": 84,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "X_train.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 85,
+ "id": "0766251e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "78 1\n",
+ "0 0\n",
+ "15 0\n",
+ "13 0\n",
+ "14 0\n",
+ "Name: class, dtype: int64"
+ ]
+ },
+ "execution_count": 85,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "y_train.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 87,
"id": "ffefa9f2",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.9333333333333333"
+ ]
+ },
+ "execution_count": 87,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "# Your code here..."
+ "# Your code here...\n",
+ "wine_tune_grid.fit(X_train, y_train)\n",
+ "\n",
+ "y_pred = wine_tune_grid.best_estimator_.predict(X_test)\n",
+ "\n",
+ "accuracy = accuracy_score(y_test, y_pred)\n",
+ "\n",
+ "accuracy"
]
},
{
@@ -365,7 +1211,7 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3.10.4",
+ "display_name": "lcr-env (3.11.14)",
"language": "python",
"name": "python3"
},
@@ -379,12 +1225,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.19"
- },
- "vscode": {
- "interpreter": {
- "hash": "497a84dc8fec8cf8d24e7e87b6d954c9a18a327edc66feb9b9ea7e9e72cc5c7e"
- }
+ "version": "3.11.14"
}
},
"nbformat": 4,