@@ -1874,6 +1874,7 @@ TEST(fully_connected_onednn, impl_replacement_with_cldnn) {
1874
1874
1875
1875
const int32_t input_f = 3 , input_b = 1 , weight_b = 4 ;
1876
1876
1877
+ auto fake_alignment_size = engine.get_device_info ().supports_immad ? 8 : 16 ;
1877
1878
auto input_dyn_layout = layout{ ov::PartialShape{ ov::Dimension (1 , 10 ), input_f }, data_types::f32,format::bfyx };
1878
1879
auto input_data = engine.allocate_memory (layout{ ov::PartialShape{ input_b, input_f }, data_types::f32,format::bfyx });
1879
1880
auto weights_data = engine.allocate_memory ({ ov::PartialShape{ weight_b, input_f }, data_types::f32,format::bfyx });
@@ -1909,7 +1910,7 @@ TEST(fully_connected_onednn, impl_replacement_with_cldnn) {
1909
1910
auto output_prim_mem = outputs.begin ()->second .get_memory ();
1910
1911
1911
1912
auto out_l = network.get_output_layout (outputs.begin ()->first );
1912
- ASSERT_EQ (output_prim_mem->get_layout ().batch (), align_to (input_b, 8 )); // fake_alignment
1913
+ ASSERT_EQ (output_prim_mem->get_layout ().batch (), align_to (input_b, fake_alignment_size )); // fake_alignment
1913
1914
ASSERT_EQ (out_l.batch (), input_b);
1914
1915
ASSERT_EQ (out_l.feature (), weight_b);
1915
1916
ASSERT_EQ (out_l.spatial (0 ), 1 );
@@ -2045,6 +2046,7 @@ TEST(fully_connected_gpu, dynamic) {
2045
2046
2046
2047
const int32_t input_f = 3 , input_b = 1 , weight_b = 4 ;
2047
2048
2049
+ auto fake_alignment_size = engine.get_device_info ().supports_immad ? 8 : 16 ;
2048
2050
auto input_dyn_layout = layout{ ov::PartialShape{ ov::Dimension (1 , 10 ), input_f }, data_types::f32,format::bfyx };
2049
2051
auto input_data = engine.allocate_memory (layout{ ov::PartialShape{ input_b, input_f }, data_types::f32,format::bfyx });
2050
2052
auto weights_data = engine.allocate_memory ({ ov::PartialShape{ weight_b, input_f }, data_types::f32,format::bfyx });
@@ -2071,7 +2073,7 @@ TEST(fully_connected_gpu, dynamic) {
2071
2073
auto output_prim_mem = outputs.begin ()->second .get_memory ();
2072
2074
2073
2075
auto out_l = network.get_output_layout (outputs.begin ()->first );
2074
- ASSERT_EQ (output_prim_mem->get_layout ().batch (), align_to (input_b, 8 )); // fake_alignment
2076
+ ASSERT_EQ (output_prim_mem->get_layout ().batch (), align_to (input_b, fake_alignment_size )); // fake_alignment
2075
2077
ASSERT_EQ (out_l.batch (), input_b);
2076
2078
ASSERT_EQ (out_l.feature (), weight_b);
2077
2079
ASSERT_EQ (out_l.spatial (0 ), 1 );
@@ -2199,7 +2201,7 @@ TEST(fully_connected_gpu, dynamic_multi_inference_same_shape) {
2199
2201
auto input_data1 = engine.allocate_memory (input_actual_layout);
2200
2202
auto input_data2 = engine.allocate_memory (input_actual_layout);
2201
2203
auto weights_data = engine.allocate_memory ({ ov::PartialShape{ weight_b, input_f }, data_types::f32,format::bfyx });
2202
-
2204
+ auto fake_alignment_size = engine. get_device_info (). supports_immad ? 8 : 16 ;
2203
2205
set_values (input_data1, { 0 .5f , -2 .0f , -0 .5f });
2204
2206
set_values (input_data2, { -0 .5f , 2 .0f , 0 .5f });
2205
2207
set_values (weights_data, { 1 .5f , 1 .0f , 0 .5f ,
@@ -2228,7 +2230,7 @@ TEST(fully_connected_gpu, dynamic_multi_inference_same_shape) {
2228
2230
auto output_prim_mem = outputs.begin ()->second .get_memory ();
2229
2231
2230
2232
auto out_l = network.get_output_layout (outputs.begin ()->first );
2231
- ASSERT_EQ (output_prim_mem->get_layout ().batch (), align_to (input_b, 8 )); // fake_alignment
2233
+ ASSERT_EQ (output_prim_mem->get_layout ().batch (), align_to (input_b, fake_alignment_size )); // fake_alignment
2232
2234
ASSERT_EQ (out_l.batch (), input_b);
2233
2235
ASSERT_EQ (out_l.feature (), weight_b);
2234
2236
ASSERT_EQ (out_l.spatial (0 ), 1 );
@@ -2252,7 +2254,7 @@ TEST(fully_connected_gpu, dynamic_multi_inference_same_shape) {
2252
2254
auto output_prim_mem = outputs.begin ()->second .get_memory ();
2253
2255
2254
2256
auto out_l = network.get_output_layout (outputs.begin ()->first );
2255
- ASSERT_EQ (output_prim_mem->get_layout ().batch (), align_to (input_b, 8 )); // fake_alignment
2257
+ ASSERT_EQ (output_prim_mem->get_layout ().batch (), align_to (input_b, fake_alignment_size )); // fake_alignment
2256
2258
ASSERT_EQ (out_l.batch (), input_b);
2257
2259
ASSERT_EQ (out_l.feature (), weight_b);
2258
2260
ASSERT_EQ (out_l.spatial (0 ), 1 );
@@ -2272,6 +2274,7 @@ TEST(fully_connected_gpu, dynamic_multi_inference_different_shape) {
2272
2274
2273
2275
const int32_t input_f = 3 , weight_b = 4 ;
2274
2276
2277
+ auto fake_alignment_size = engine.get_device_info ().supports_immad ? 8 : 16 ;
2275
2278
auto input_dyn_layout = layout{ ov::PartialShape{ ov::Dimension (1 , 10 ), input_f }, data_types::f32,format::bfyx };
2276
2279
auto input_actual_layout1 = layout{ ov::PartialShape{ 2 , input_f }, data_types::f32,format::bfyx};
2277
2280
auto input_actual_layout2 = layout{ ov::PartialShape{ 1 , input_f }, data_types::f32,format::bfyx};
@@ -2311,7 +2314,7 @@ TEST(fully_connected_gpu, dynamic_multi_inference_different_shape) {
2311
2314
auto output_prim_mem = outputs.begin ()->second .get_memory ();
2312
2315
2313
2316
auto out_l = network.get_output_layout (outputs.begin ()->first );
2314
- ASSERT_EQ (output_prim_mem->get_layout ().batch (), align_to (2 , 8 )); // fake_alignment
2317
+ ASSERT_EQ (output_prim_mem->get_layout ().batch (), align_to (2 , fake_alignment_size )); // fake_alignment
2315
2318
ASSERT_EQ (out_l.batch (), 2 );
2316
2319
ASSERT_EQ (out_l.feature (), weight_b);
2317
2320
ASSERT_EQ (out_l.spatial (0 ), 1 );
@@ -2340,7 +2343,7 @@ TEST(fully_connected_gpu, dynamic_multi_inference_different_shape) {
2340
2343
auto output_prim_mem = outputs.begin ()->second .get_memory ();
2341
2344
2342
2345
auto out_l = network.get_output_layout (outputs.begin ()->first );
2343
- ASSERT_EQ (output_prim_mem->get_layout ().batch (), align_to (1 , 8 )); // fake_alignment
2346
+ ASSERT_EQ (output_prim_mem->get_layout ().batch (), align_to (1 , fake_alignment_size )); // fake_alignment
2344
2347
ASSERT_EQ (out_l.batch (), 1 );
2345
2348
ASSERT_EQ (out_l.feature (), weight_b);
2346
2349
ASSERT_EQ (out_l.spatial (0 ), 1 );
@@ -2360,6 +2363,7 @@ TEST(fully_connected_gpu, dynamic_multi_inference_multiple_shapes) {
2360
2363
2361
2364
const int32_t input_f = 3 , weight_b = 4 ;
2362
2365
2366
+ auto fake_alignment_size = engine.get_device_info ().supports_immad ? 8 : 16 ;
2363
2367
auto input_dyn_layout = layout{ ov::PartialShape{ ov::Dimension (1 , 10 ), input_f }, data_types::f32,format::bfyx };
2364
2368
auto input_actual_layout1 = layout{ ov::PartialShape{ 2 , input_f }, data_types::f32,format::bfyx};
2365
2369
auto input_actual_layout2 = layout{ ov::PartialShape{ 1 , input_f }, data_types::f32,format::bfyx};
@@ -2398,7 +2402,7 @@ TEST(fully_connected_gpu, dynamic_multi_inference_multiple_shapes) {
2398
2402
auto output_prim_mem = outputs.begin ()->second .get_memory ();
2399
2403
2400
2404
auto out_l = network.get_output_layout (outputs.begin ()->first );
2401
- ASSERT_EQ (output_prim_mem->get_layout ().batch (), align_to (2 , 8 )); // fake_alignment
2405
+ ASSERT_EQ (output_prim_mem->get_layout ().batch (), align_to (2 , fake_alignment_size )); // fake_alignment
2402
2406
ASSERT_EQ (out_l.batch (), 2 ); // fake_alignment
2403
2407
ASSERT_EQ (out_l.feature (), weight_b);
2404
2408
ASSERT_EQ (out_l.spatial (0 ), 1 );
@@ -2427,7 +2431,7 @@ TEST(fully_connected_gpu, dynamic_multi_inference_multiple_shapes) {
2427
2431
auto output_prim_mem = outputs.begin ()->second .get_memory ();
2428
2432
2429
2433
auto out_l = network.get_output_layout (outputs.begin ()->first );
2430
- ASSERT_EQ (output_prim_mem->get_layout ().batch (), align_to (1 , 8 )); // fake_alignment
2434
+ ASSERT_EQ (output_prim_mem->get_layout ().batch (), align_to (1 , fake_alignment_size )); // fake_alignment
2431
2435
ASSERT_EQ (out_l.batch (), 1 ); // fake_alignment
2432
2436
ASSERT_EQ (out_l.feature (), weight_b);
2433
2437
ASSERT_EQ (out_l.spatial (0 ), 1 );
@@ -2661,6 +2665,7 @@ TEST(fully_connected_gpu, has_cached_weights_reorder) {
2661
2665
2662
2666
const int32_t input_f = 3 , input_b = 1 , weight_b = 4 ;
2663
2667
2668
+ auto fake_alignment_size = engine.get_device_info ().supports_immad ? 8 : 16 ;
2664
2669
auto input_dyn_layout = layout{ ov::PartialShape{ ov::Dimension (1 , 10 ), input_f }, data_types::f32,format::bfyx };
2665
2670
auto input_data = engine.allocate_memory (layout{ ov::PartialShape{ input_b, input_f }, data_types::f32,format::bfyx });
2666
2671
auto weights_data = engine.allocate_memory ({ ov::PartialShape{ weight_b, input_f }, data_types::f32,format::bfyx });
@@ -2701,7 +2706,7 @@ TEST(fully_connected_gpu, has_cached_weights_reorder) {
2701
2706
ASSERT_TRUE (reorder_impl == nullptr );
2702
2707
2703
2708
auto out_l = network.get_output_layout (outputs.begin ()->first );
2704
- ASSERT_EQ (output_prim_mem->get_layout ().batch (), align_to (input_b, 8 )); // fake_alignment
2709
+ ASSERT_EQ (output_prim_mem->get_layout ().batch (), align_to (input_b, fake_alignment_size )); // fake_alignment
2705
2710
ASSERT_EQ (out_l.batch (), input_b);
2706
2711
ASSERT_EQ (out_l.feature (), weight_b);
2707
2712
ASSERT_EQ (out_l.spatial (0 ), 1 );
0 commit comments