diff --git a/latent.ipynb b/latent.ipynb index 90e5d45..915471a 100644 --- a/latent.ipynb +++ b/latent.ipynb @@ -1076,7 +1076,7 @@ " im.save(temp_file, format = \"PNG\")\n", " init = Image.open(fetch(temp_file)).convert('RGB')\n", " init = TF.to_tensor(init).to(device).unsqueeze(0)\n", - " opt.H, opt.W = opt.H*scale_factor, opt.W*scale_factor\n", + " opt.H, opt.W = int(opt.H*scale_factor), int(opt.W*scale_factor)\n", " init = resize(init,out_shape = [opt.n_samples,3,opt.H, opt.W], antialiasing=True)\n", " init = init.mul(2).sub(1).half()\n", " x_T = (model.first_stage_model.encode(init).sample()*init_magnitude)\n", @@ -1103,7 +1103,7 @@ " progress.value = output.getvalue()\n", " init = Image.open(fetch(f\"GFPGAN/results/restored_imgs/{temp_file_name}\")).convert('RGB')\n", " init = TF.to_tensor(init).to(device).unsqueeze(0)\n", - " opt.H, opt.W = opt.H*scale_factor, opt.W*scale_factor\n", + " opt.H, opt.W = int(opt.H*scale_factor), int(opt.W*scale_factor)\n", " init = resize(init,out_shape = [opt.n_samples,3,opt.H, opt.W], antialiasing=True)\n", " init = init.mul(2).sub(1).half()\n", " x_T = (model.first_stage_model.encode(init).sample()*init_magnitude)\n",